Устойчивость организма к гипоксии. Оценка факторов риска и их влияние на формирование устойчивости к кислородной недостаточности у студентов

Оценка факторов риска и их роль в формировании кислородной недостаточности у студентов КазГМУ. Сунцов Д., Жанузакова А., Омарова З. – 207 гр. леч. ф-т. Научные руководители: доцент Бисерова А.Г. доцент Хасенова Х.К. В течение 1-й половины 1999 г. нами было проведено исследование состояния дыхательной системы у студентов лечебного факультета второго курса КазГМУ. Исследование проводилось опросно-анкетным методом. Студентам предлагалось выполнить задания и ответить на вопросы анкеты (приложение 1). Целью нашей работы является наглядное отображение влияние факторов риска и их негативная роль в формировании кислородной недостаточности. Мы опирались на широко известные пробы Генчи и Штанге, которые помогают выявить устойчивость исследуемых к гипоксии, и самое главное, способность организма обеспечить нормальную работоспособность в неординарных условиях, что отражает степень его тренированности. Что такое гипоксия? Необходимым условием жизнедеятельности любой биологической структуры является непрерывное потребление энергии. Эта энергия расходуется на пластические процессы, т.е. на сохранение и обновление элементов, входящих в состав данной структуры, и на обеспечение ее функциональной активности. Все животные получают необходимую им энергию при катаболизме содержащихся в пище углеводов, жиров и белков. Однако клетки животных организмов не способны непосредственно использовать энергию питательных веществ. Последние должны предварительно пройти многочисленные превращения, совокупность которых называется биологическим окислением. В результате биологического окисления энергия питательных веществ переходит в легко утилизируемую форму фосфатных связей макроэргических соединений, среди которых ключевое место занимает АТФ. Основная часть макроэргов образуется в митохондриях, в которых происходит сопряженное с фосфорилированием окисление субстратов; следовательно, для нормального энергообеспечения жизненных процессов необходимо, чтобы в митохондрии поступало достаточное количество субстратов и кислорода, происходила эффективная их утилизация и непрерывно образовывались достаточные количества АТФ. Если потребность в АТФ не удовлетворяется, возникает состояние энергетического дефицита, приводящее к закономерным метаболическим, функциональным и морфологическим нарушениям вплоть до гибели клеток. При этом возникают также разнообразные приспособительные и компенсаторные реакции. Совокупность всех этих процессов называется гипоксией. Гипоксия встречается весьма часто и служит патогенетической основой или важным компонентом множества заболеваний. В зависимости от этиологии, степени, скорости развития и продолжительности гипоксического состояния, реактивности организма проявления гипоксии могут значительно варьировать, сохраняя, однако, основные существенные особенности. Таким образом, можно определить гипоксию как типовой патологический процесс, возникающий в результате недостаточности биологического окисления и обусловленной ею энергетической необеспеченности жизненных процессов. Классификация гипоксических состояний В зависимости от причин возникновения и механизмов развития различают гипоксию, обусловленную недостатком кислорода во вдыхаемом воздухе, недостаточным поступлением его в организм, недостаточным транспортом к клеткам и нарушением утилизации в митохондриях. Соответственно выделяют следующие основные типы гипоксии: 1. Экзогенный: . Гипобарический; . Нормобарический. 2. Респираторный (дыхательный). 3. Циркуляторный (сердечно-сосудистый). 4. Гемический (кровяной). 5. Тканевый (первично-тканевый). 6. Перегрузочный (гипоксия нагрузки). 7. Субстратный. 8. Смешанный. По критерию распространенности гипоксического состояния различают: . Местную гипоксию; . Общую гипоксию. По скорости развития и длительности: . Молниеносную; . Острую; . Подострую; . Хроническую. По степени тяжести: . Легкую; . Умеренную; . Тяжелую; . Критическую (смертельную) гипоксию. Защитно-приспособительные реакции при гипоксии Экстренная адаптация При воздействии на организм факторов, вызывающих гипоксию, обычно быстро возникает ряд приспособительных реакций, направленных на ее предотвращение или устранение. Важное место среди экстренных приспособительных механизмов принадлежит системам транспорта кислорода. Дыхательная система реагирует увеличением альвеолярной вентиляции за счет углубления, учащения дыхания и мобилизации резервных альвеол; одновременно усиливается легочный кровоток. Реакции гемодинамической системы выражаются увеличением общего объема циркулирующей крови за счет опорожнения кровяных депо, увеличения венозного возврата и ударного объема, тахикардии, а также перераспределением кровотока, направленным на преимущественное кровоснабжение мозга, сердца и других жизненно важных органов. В системе крови проявляются резервные свойства гемоглобина, определяемые кривой взаимоперехода его окси- и дезоксиформ в зависимости от Ро2 в плазме крови, рН, Рсо2 и некоторых других физико-химических факторов, что обеспечивает достаточное насыщение крови кислородом в легких даже при значительном его дефиците и более полное отщепление кислорода в испытывающих гипоксию тканях. Кислородная емкость крови увеличивается также за счет усиленного вымывания эритроцитов из костного мозга. Приспособительные механизмы на уровне систем утилизации кислорода проявляются в ограничении функциональной активности органов и тканей, непосредственно не участвующих в обеспечении биологического окисления, увеличении сопряженности окисления и фосфорилирования, усиления анаэробного синтеза АТФ за счет активации гликолиза. Долговременная адаптация Повторяющаяся гипоксия умеренной интенсивности способствует формированию состояния долговременной адаптации организма, в основе которой лежит повышение возможностей систем транспорта и утилизации кислорода: стойкое увеличение диффузионной поверхности легочных альвеол, более совершенная корреляция легочной вентиляции и кровотока, компенсаторная гипертрофия миокарда, увеличенное содержание гемоглобина в крови, а также увеличение количества митохондрий на единицу массы клетки. Нарушения обмена веществ и физиологических функций при гипоксии При недостаточности или истощении приспособительных механизмов возникают функциональные и структурные нарушения вплоть до гибели организма. Метаболические изменения раньше всего наступают в энергетическом и углеводном обмене: уменьшается содержание в клетках АТФ при одновременном увеличении концентрации продуктов его гидролиза – АДФ, АМФ и неорганического фосфата; в некоторых тканях (особенно в головном мозге) еще раньше падает содержание креатинфосфата. Значительно активируется гликолиз, вследствие чего падает содержание гликогена и увеличивается концентрация пирувата и лактата; это способствует также общему замедлению окислительных процессов и затруднению энергозависимых процессов ресинтеза гликогена из молочной кислоты. Недостаточность окислительных процессов влечет за собой ряд других обменных сдвигов, нарастающих по мере углубления гипоксии: нарушается обмен липидов, белков, электролитов, нейромедиаторов; возникают метаболический ацидоз, отрицательный азотистый баланс. При дальнейшем усугублении гипоксии угнетается и гликолиз, усиливаются процессы деструкции и распада. Нарушения функции нервной системы обычно начинаются в сфере высшей нервной деятельности (ВНД) и проявляются в расстройстве наиболее сложных аналитико-синтетических процессов. Нередко наблюдается своеобразная эйфория, теряется способность адекватно оценивать обстановку. При усугублении гипоксии возникают грубые нарушения ВНД вплоть до утраты способности к простому счету, помрачнения и полной потери сознания. Уже на ранних стадиях гипоксии наблюдается расстройство координации вначале сложных, а затем и простейших движений, переходящих в адинамию. Нарушения кровообращения выражаются в тахикардии, ослаблении сократительной способности сердца, аритмиях вплоть до фибрилляции предсердий и желудочков. Артериальное давление вначале может повышаться, а затем прогрессивно падает вплоть до развития коллапса; возникают расстройства микроциркуляции. В системе дыхания после стадии активации возникают диспноэтические явления с различными нарушениями ритма и амплитуды дыхательных движений. После нередко наступающей кратковременной остановки появляется терминальное (агональное) дыхание в виде редких глубоких судорожных «вздохов», постепенно ослабевающих вплоть до полного прекращения. При особо быстро развивающейся (молниеносной) гипоксии большая часть клинических изменений отсутствует, так как очень быстро происходит полное прекращение жизненно важных функций и наступает клиническая смерть. Хронические формы гипоксии, возникающие при длительной недостаточности кровообращения, дыхания, при болезнях крови и других состояниях, сопровождающихся стойкими нарушениями окислительных процессов в тканях, проявляется повышенной утомляемостью, одышкой, сердцебиением при небольшой физической нагрузке, общим дискомфортом, постепенно развивающимися дистрофическими изменениями в различных органах и тканях. Профилактика и терапия гипоксических состояний Профилактика и лечение гипоксии зависят от вызвавшей ее причины и должны быть направлены на ее устранение или ослабление. В качестве общих мер применяют вспомогательное или искусственное дыхание, дыхание кислородом под нормальным и повышенном давлением, электроимпульсную терапию нарушений сердечной деятельности, переливание крови, фармакологические средства. В последнее время получают распространение так называемые антиоксиданты – средства, направленные на подавление свободнорадикального окисления мембранных липидов, играющего существенную роль в гипоксическом повреждении тканей, и антигипоксаты, оказывающие непосредственное благоприятное действие на процессы биологического окисления. Устойчивость к гипоксии может быть повышена специальными тренировками для работы в условиях высокогорья, в замкнутых помещениях и других специальных условиях. В последнее время получены данные о перспективности использования для профилактики и терапии различных заболеваний, содержащих гипоксический компонент, тренировку дозированной гипоксией по определенным схемам и выработку долговременной адаптацией к ней. Результаты исследования В исследовании приняло участие 87 человек в возрасте 18-21 лет, из них 35 (40,2%) мужчин и 52 (59,8%) женщин. Анализ анкетных данных исследуемых показан в таблице 1. Табл. 1. Соотношение трех анализируемых групп среди общего количества исследованных студентов |Пол |Курящие |Имеющие хронич. |Занимающиеся | | | |заболев. органов |спортом | | | |дыхания | | |Женщины |6 (11,5%) |15 (28,8%) |16 (30,8%) | |Мужчины |12 (34,3%) |8 (22,9%) |18 (51,4%) | |Общее кол-во |18 (20,7%) |23 (26,4%) |34 (39,1%) | Как видно из таблицы 1, факторам риска подвержены около 25% студентов: 11,5% женщин и 34,3% мужчин курят, 28,8% женщин и 22,9% мужчин уже имеют хронические заболевания органов дыхания. Из позитивных факторов в формировании устойчивости к кислородной недостаточности нами учитывалось регулярное занятие спортом. Как видно из таблицы 1, всего лишь 30,8% женщин и 51,4% мужчин систематически посещают физкультурный зал. Рассмотрим полученные результаты по пробе Генчи. Она заключалась в том, что после трех глубоких дыхательных движений нужно было задержать дыхание на выдохе и измерить максимальное время, на которое возможна задержка дыхания. Результат считался хорошим, если исследуемый смог задержать дыхание на время >40 секунд; удовлетворительным – 35-39 секунд; неудовлетворительным - 50 секунд; удовлетворительным – 40-49 секунд; неудовлетворительным - 50 сек. ? Перед выполнением задания измерьте свой пульс и отметьте его здесь _______(ударов в минуту). Проба Генчи Задание: Сделайте три глубоких дыхательных движения и задержите дыхание на выдохе. Измерьте время, на которое Вы сможете задержать дыхание, и отметьте его, закрасив соответствующий квадратик. Сразу после выполнения задания измерьте свой пульс и отметьте его здесь _____(удар. в мин) Результаты: 40 сек. ? Перед тем как Вы начнете выполнять предложенные упражнения, советуем внимательно прочесть задания до конца. Для установления нужных параметров Вам потребуются часы с секундной стрелкой. Полученные результаты, пожалуйста, записывайте в разделе «Результаты» после каждого задания. Вашему вниманию предлагаются тесты, позволяющие определить Вашу устойчивость к гипоксии. Данные тесты являются частью статистического исследования состояния здоровья студентов Казахского Государственного Медицинского Университета им. С. Д. Асфендиярова. Просим Вас отнестись к нашей инициативе с вниманием и пониманием. Заранее благодарим Вас за участие!

Устойчивость организма к недостатку кислорода - одному из факторов адаптации - определяется генетическими и фенотипическими свойствами (наследственными и приобретенными в процессе жизни).

Ученые установили, что кратковременное гипоксическое воздействие в определенных пределах может повышать устойчивость организма к влиянию стресса, активизировать деятельность жизненно важных функций организма.

Известно, что горные жители относятся к группам долгожителей, а среднегорье и высокогорье отличается сниженным содержанием кислорода в воздухе. Поэтому периодические выезды людей, живущих в условиях равнины, в горы способствуют повышению работоспособности, увеличению продолжительности жизни, сохранению активной деятельности до старости.

В условиях умеренной гипоксии улучшается сопротивляемость организма к разнообразным патогенным факторам, повышается стрессоустойчивость.

При гипоксии возбуждаются клетки головного мозга, активизируется дыхание, увеличивается количество эритроцитов и кислорода в крови, улучшается минутный объем кровообращения.

Однако выезды в горы требуют значительных материальных затрат, и ученые стали проводить эксперименты в барокамере.

Исследованиями было определено, что наибольший эффект дают кратковременные гипоксические нагрузки. Так были разработаны программы «ступенчатого» и «интервального» подъема в барокамере.

При «ступенчатом» подъеме после достижения определенной высоты делается отдых, т. е. пребывание на этой высоте в течение 5-15 минут, а затем снова подъем на очередную высоту.

При «интервальном» происходит чередование подъема на определенную высоту и спуска на более низкую, затем снова подъем. Регулируется и время пребывания на каждой высоте.

Подъемы и спуски в течение одного сеанса производят хороший тренировочный эффект и существенно влияют на повышение гипоксической устойчивости.

При стрессе адреналин выбрасывается в кровь, отчего расширяются сосуды сердца, мозга и легких, но происходит сужение сосудов кожи (человек бледнеет), возрастает частота сердечных сокращений и повышается АД.

Артериальное давление увеличивает способность сердца усваивать кислород. Однако у людей недостаточно тренированных, склонных к чрезмерной реактивности при отрицательных эмоциях, такая защитная мера может стать опасной и даже вызвать сердечную недостаточность вплоть до инфаркта миокарда.

При чрезмерной реакции на стресс выделяется большое количество гормона кортизола, снижается способность быстро усваивать вновь образуемый сахар, и даже возможно возникновение временного сахарного диабета. Известно, например, что на бирже при падении курса акций у некоторых людей иногда возникает «диабет биржевиков».

Следовательно, чрезмерно высокая реактивность организма и низкая гипоксическая устойчивость при стрессе являются причинами возникновения серьезных сдвигов в организме.

Все это стало основанием для глубокого изучения реакций человека на гипоксию и гиперкапнию (повышение содержания двуокиси углерода - С0 2 -в артериальной крови).

Известные физиологи В. А. Илюхина и И. Б. Заболоцких обнаружили, что различные физиологические системы организма по-разному проявляют гипоксическую устойчивость, которая является характеристикой адаптационных возможностей.

Различие адаптационных возможностей наблюдается у лиц с различными способностями быстро мобилизовать свою нервно-мышечную систему к расслаблению. Это установил в своих исследованиях, проводимых в течение многих лет, Ю. В. Высочин.

Был установлен и другой интересный факт: люди с низкой скоростью произвольного расслабления мышц наименее устойчивы к гипоксии.

Ученый выявил 3 типа людей:

релаксанты - способные к быстрому произвольному расслабления мышц, быстрому включению своего «тормоза», снижающего чрезмерное возбуждение (при гипоксическом, тепловом, эмоциональном, экстремальном воздействиях среды и физических нагрузках);

гипертрафики - имеющие мощную мышечную систему, но неспособные к ее быстрому расслаблению;

смешанный (переходный) тип - имеющий средние показатели.

Следовательно, гипоксическая устойчивость и способность к быстрому расслаблению взаимосвязаны.

В исследованиях Ю. В. Высочина показано, что гипоксическая устойчивость требует особого внимания и тренеров, и врачей, и людей, страдающих рядом заболеваний. Повышение гипоксической устойчивости и скорости произвольного расслабления мышц способствуют увеличению адаптационных возможностей организма.

Мышцы человека называют «вторым сердцем», и это действительно так, ибо, как показал в своих исследованиях известный ученый Р. П. Нарциссов, произвольная мускулатура и миокард при многих заболеваниях выступают в качестве системы защиты.

Первой выступает на защиту нервно-мышечная система, при заболевании обменные процессы в мышцах активизируются как в начале заболевания (повышается температура), так и в конце (температура понижается).

Ю. В. Высочин доказал, что существует тормозная релаксационная функциональная система защиты (ТРФСЗ), которая играет существенную роль в обеспечении адаптационных процессов, нормализации баланса нервных процессов организма.

Иначе говоря, при включении ТРФСЗ защитная функция осуществляется за счет нормализации баланса нервных процессов и повышения скорости произвольного расслабления мышц.

Повышение гипоксической устойчивости взаимосвязано с этими процессами и более выражено у релаксантов.

У людей гипертрофического типа низкая активность ТРФСЗ, увеличен объем мышечной массы, повышена возбудимость, низкая экономичность деятельности сердца. Кроме того, установлено, что у таких людей низкая стрессо- и гипоксическая устойчивость, большая возможность получения травм и заболеваний.

Ученый считает, что повышенная резистентность может быть обеспечена при целенаправленном воздействии на формирование рационального типа - релаксанта.

Повышение гипоксической устойчивости и скорости произвольного расслабления мышц позволяет человеку увеличивать возможности своей системы защиты.

Вероятность возникновения перенапряжений опорно-двигательного аппарата у релаксантов значительно меньше по сравнению с гипертрофиками.

Релаксационные возможности повышаются при:

Гипоксической тренировке с использованием серий кратковременной задержки дыхания (1/2 от возможной максимальной задержки);

Использования выездов в среднегорье (высота 1500-2500 м над уровнем моря);

Использование барокамерной подготовки (с перепадом высот от 1500 до 4000 м);

Использование термовоздействий (сауна, баня: кратковременное пребывание по 8-10 мин и перерывами в прохладной температуре бассейна);

Использование медитативной или аутогенной тренировки;

Специальные упражнения на расслабление.

Люди с низкой гипоксической устойчивостью требуют особого внимания при родах и операциях.

Исследования показали, что люди с низкой устойчивостью к гипоксии характеризуются и низкой устойчивостью к физиологическому стрессу.

Известно, что неблагоприятное влияние на здоровье человека присуще и физическим, и эмоциональным стрессам. Например, шум, сам по себе не связанный с какой-либо опасностью для человека, может вызывать не только состояние тревоги, но и нарушение пищеварения, тормозя деятельность желудка и вызывая неврозы.

Стрессы при длительном воздействии могут переходить в хронические.

К признакам эмоционального хронического стресса относятся:

Смена настроения;

Повышенная тревожность;

Раздражительность;

Усталость и рассеянность.

Поведенческие проявления хронического стресса выражаются:

В нарушениях сна;

Потере аппетита, а иногда и переедании;

Снижении работоспособности и других негативных моментах.

От уровня гипоксической устойчивости зависит и устойчивость к тем или иным стрессам. Следовательно, зная свою гипоксическую устойчивость можно своевременно принять меры к ее повышению. Существуют пробы, по которым можно самому это определить.

Министерство Здравоохранения Республики Беларусь

Белорусский государственный медицинский университет

КАФЕДРА ПАТОЛОГИЧЕСКОЙ ФИЗИОЛОГИИ

Е.В. Леонова, Ф.И. Висмонт

ГИПОКСИЯ

(патофизиологические аспекты)


УДК 612.273.2(075.8)

Рецензент: доктор мед. наук, профессор М.К. Недзведзь

Утверждено Научно-методическим советом университета

Леонова Е.В.

Гипоксия (патофизиологические аспекты): Метод. рекомендации

/Е.В. Леонова, Ф.И. Висмонт – Мн.: БГМУ, 2002. – 22 с.

Издание содержит краткое изложение патофизиологии гипоксических состояний. Дана общая характеристика гипоксии, как типового патологического процесса; обсуждаются вопросы этиологии и патогенеза различных видов гипоксий, компенсаторно-приспособительные реакции и нарушения функций, механизмы гипоксического некробиоза, адаптация к гипоксии и дизадаптация.

УДК 612.273.2(075.8)

ББК 28.707.3 &73

© Белорусский государственный

медицинский университет, 2002

1. Мотивационная характеристика темы

Общее время занятий: 2 академических часа для студентов стоматологического факультета, 3 – для студентов лечебно-профилактического, медико-профилактического и педиатрического факультетов.

Учебно-методическое пособие разработано с целью оптимизации учебного процесса и предлагается для подготовки студентов к практическому занятию по теме «Гипоксия». Данная тема рассматривается в разделе «Типовые патологические процессы». Приведенные сведения отражают связь со следующими темами предмета: «Патофизиология системы внешнего дыхания», «Патофизиология сердечно-сосудистой системы», «Патофизиология системы крови», «Патофизиология обмена веществ», «Нарушения кислотно-основного состояния».

Гипоксия является ключевым звеном патогенеза разнообразных заболеваний и патологических состояний. При любом патологическом процессе имеют место явления гипоксии, она играет важную роль в развитии повреждений при многих болезнях и сопровождает острую гибель организма независимо от причин ее вызывающих. Однако, в учебной литературе раздел «Гипоксия», по которому накоплен обширный материал, изложен очень широко, с излишними подробностями, что затрудняет его восприятие иностранными учащимися, которые в силу языкового барьера испытывают трудности при конспектировании лекций. Вышесказанное и явилось поводом для написания настоящего пособия. В пособии дается определение и общая характеристика гипоксии как типового патологического процесса, в краткой форме обсуждаются вопросы этиологии и патогенеза различных ее видов, компенсаторно-приспособительные реакции, нарушения функций и обмена веществ, механизмы гипоксического некробиоза; дается представление об адаптации к гипоксии и дизадаптации.

Цель занятия - изучить этиологию, патогенез различных видов гипоксии, компенсаторно-приспособительные реакции, нарушения функций и обмена веществ, механизмы гипоксического некробиоза, адаптации к гипоксии и дизадаптации.

Задачи занятия

Студент должен:

Определение понятия гипоксии, ее виды;

Патогенетическую характеристику различных видов гипоксии;

Компенсаторно-приспособительные реакции при гипоксии, их виды, механизмы;

Нарушения основных жизненных функций и обмена веществ при гипоксических состояниях;

Механизмы повреждения и гибели клеток при гипоксии (механизмы гипоксического некробиоза);

Основные проявления дизбаризма (декомпрессии);

Механизмы адаптации к гипоксии и дизадаптации.

Дать обоснованное заключение о наличии гипоксического состояния и характере гипоксии на основании анамнеза, клинической картины, газового состава крови и показателей кислотно-основного состояния.

3. Быть ознакомленным с клиническими проявлениями гипоксических состояний.

2. Контрольные вопросы по смежным дисциплинам

1. Кислородный гомеостаз, его сущность.

2. Система обеспечения организма кислородом, ее компоненты.

3. Структурно-функциональная характеристика дыхательного центра.

4. Кислородтранспортная система крови.

5. Газообмен в легких.

6. Кислотно-основное состояние организма, механизмы его регуляции.

3. Контрольные вопросы по теме занятия

1. Определение гипоксии как типового патологического процесса.

2. Классификация гипоксий по а) этиологии и патогенезу, б) распространенности процесса, в) скорости развития и длительности, г) степени тяжести.

3. Патогенетическая характеристика различных видов гипоксий.

4. Компенсаторно-приспособительные реакции при гипоксиях, их виды, механизмы возникновения.

5. Нарушения функций и обмена веществ при гипоксиях.

6. Механизмы гипоксического некробиоза.

7. Дизбаризм, его основные проявления.

8. Адаптация к гипоксии и дизадаптация, механизмы развития.

4. Гипоксия

4.1. Определение понятия. Виды гипоксий.

Гипоксия (кислородное голодание) – типовой патологический процесс, возникающий в результате недостаточности биологического окисления и обусловленной ею энергетической необеспеченности жизненных процессов. В зависимости от причин и механизма развития различают гипоксии:

· экзогенные , возникающие при воздействии на систему обеспечения кислородом изменениями его содержания во вдыхаемом воздухе и (или) изменениями общего барометрического давления – гипоксическую (гипо- и-нормобарическую), гипероксическую (гипер- и-нормобарическую);

· дыхательную (респираторную);

· циркуляторную (ишемическую и застойную);

· гемическую (анемическую и вследствие инактивации гемоглобина);

· тканевую (при нарушении способности тканей поглощать кислород или при разобщении процессов биологического окисления и фосфорилирования);

· субстратную (при дефиците субстратов);

· перегрузочную («гипоксия нагрузки»);

· смешанную .

Выделяют также гипоксии: а) по течению, молниеносную, длящуюся несколько десятков секунд; острую – десятки минут; подострую – часы, десятки часов, хроническую – недели, месяцы, годы; б) по распространенности – общую и регионарную; в) по степени тяжести – легкую, умеренную, тяжелую, критическую (смертельную) формы.

Проявления и исход гипоксий зависят от природы этиологического фактора, индивидуальной реактивности организма, степени тяжести, скорости развития, продолжительности процесса.

4.2. Этиология и патогенез гипоксий

4.2.1. Гипоксическая гипоксия

а) Гипобарическая. Возникает при понижении парциального давления кислорода во вдыхаемом воздухе, в условиях разреженной атмосферы. Имеет место при подъеме в горы (горная болезнь) или при полетах на летательных аппаратах (высотная болезнь, болезнь летчиков). Основными факторами, вызывающими патологические сдвиги являются: 1) понижение парциального давления кислорода во вдыхаемом воздухе (гипоксия); 2) понижение атмосферного давления (декомпрессия или дизбаризм).

б) Нормобарическая. Развивается в тех случаях, когда общее барометрическое давление нормально, но парциальное давление кислорода во вдыхаемом воздухе понижено. Встречается, главным образом, в производственных условиях (работа в шахтах, неполадки в системе кислородного обеспечения кабины летательного аппарата, в подводных лодках, а также имеет место при нахождении в помещениях малого объема при большой скученности людей.)

При гипоксической гипоксии снижается парциальное давление кислорода во вдыхаемом и альвеолярном воздухе; напряжение и содержание кислорода в артериальной крови; возникает гипокапния, сменяющаяся гиперкапнией.

4.2.2. Гипероксическая гипоксия

а) Гипербарическая. Возникает в условиях избытка кислорода («голод среди изобилия»). «Лишний» кислород не потребляется в энергетических и пластических целях; угнетает процессы биологического окисления; подавляет тканевое дыхание является источником свободных радикалов, стимулирующих перекисное окисление липидов, вызывает накопление токсических продуктов, а также вызывает повреждение легочного эпителия, спадение альвеол, снижение потребления кислорода, и в конечном счете нарушается обмен веществ, возникают судороги, коматозное состояние (осложнения при гипербарической оксигенации).

б) Нормобарическая. Развивается как осложнение при кислородной терапии, когда длительно используются высокие концентрации кислорода, особенно у пожилых людей, у которых с возрастом падает активность антиоксидантной системы.

При гипероксической гипоксии в результате увеличения парциального давления кислорода во вдыхаемом воздухе увеличивается его воздушно-венозный градиент, но снижается скорость транспорта кислорода артериальной кровью и скорость потребления кислорода тканями, накапливаются недоокисленные продукты, возникает ацидоз.

4.2.3. Дыхательная (респираторная) гипоксия

Развивается в результате недостаточности газообмена в легких в связи с альвеолярной гиповентиляцией, нарушением вентиляционно-перфузионных отношений, затруднением диффузии кислорода (болезни легких, трахеи, бронхов, нарушение функции дыхательного центра; пневмо-, гидро-, гемоторакс, воспаление, эмфизема, саркоидоз, асбестоз легких; механические препятствия для поступления воздуха; локальное запустевание сосудов легких, врожденные пороки сердца). При респираторной гипоксии в результате нарушения газообмена в легких снижается напряжение кислорода в артериальной крови, возникает артериальная гипоксемия, в большинстве случаев в связи с ухудшением альвеолярной вентиляции, сочетающаяся с гиперкапнией.

4.2.4. Циркуляторная (сердечно-сосудистая) гипоксия

Возникает при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей. Важнейший показатель и патогенетическая основа ее развития – уменьшение минутного объема крови. Причины: расстройства сердечной деятельности (инфаркт, кардиосклероз, перегрузка сердца, нарушения электролитного баланса, нейрогуморальной регуляции функции сердца, тампонада сердца, облитерация полости перикарда); гиповолемия (массивная кровопотеря, уменьшение притока венозной крови к сердцу и др.). При циркуляторной гипоксии снижается скорость транспорта кислорода артериальной, капиллярной кровью при нормальном или сниженном содержании в артериальной крови кислорода, снижение этих показателей в венозной крови, высокая артериовенозная разница по кислороду.

4.2.5. Кровяная (гемическая) гипоксия

Развивается при уменьшении кислородной емкости крови. Причины: анемия, гидремия; нарушение способности гемоглобина связывать, транспортировать и отдавать тканям кислород при качественных изменениях гемоглобина (образование карбоксигемоглобина, метгемоглобинообразование, генетически обусловленные аномалии Нв). При гемической гипоксии снижается содержание кислорода в артериальной и венозной крови; уменьшается артерио-венозная разница по кислороду.

4.2.6. Тканевая гипоксия

Различают первичную и вторичную тканевую гипоксию. К первичной тканевой (целлюлярной) гипоксии относят состояния, при которых имеет место первичное поражение аппарата клеточного дыхания. Основные патогенетические факторы первично-тканевой гипоксии: а) снижение активности дыхательных ферментов (цитохромоксидазы при отравлении цианидами), дегидрогеназ (действие больших доз алкоголя, уретана, эфира), снижение синтеза дыхательных ферментов (недостаток рибофлавина, никотиновой кислоты), б) активация перекисного окисления липидов, ведущая к дестабилизации, декомпозиции мембран митохондрий и лизосом (ионизирующее излучение, дефицит естественных антиоксидантов – рутина, аскорбиновой кислоты, глютатиона, каталазы и др.), в) разобщение процессов биологического окисления и фосфорилирования, при котором потребление кислорода тканям может возрастать, но значительная часть энергии рассеивается в виде тепла и несмотря на высокую интенсивность функционирования дыхательной цепи, ресинтез макроэргических соединений не покрывает потребностей тканей, возникает относительная недостаточность биологического окисления. Ткани находятся в состоянии гипоксии. При тканевой гипоксии парциальное напряжение и содержание кислорода в артериальной крови могут до известного предела оставаться нормальными, а в венозной крови значительно повышаются; уменьшается артерио-венозная разница по кислороду. Вторичная тканевая гипоксия может развиться при всех других видах гипоксии.

4.2.7. Субстратная гипоксия

Развивается в тех случаях, когда при адекватной доставке кислорода к органам и тканям, нормальном состоянии мембран и ферментных систем возникает первичный дефицит субстратов, приводящий к нарушению всех звеньев биологического окисления. В большинстве случаев такая гипоксия связана с дефицитом в клетках глюкозы, например, при расстройствах углеводного обмена (сахарный диабет и др.), а также при дефиците других субстратов (жирных кислот в миокарде), тяжелом голодании.

4.2.8. Перегрузочная гипоксия («гипоксия нагрузки»)

Возникает при напряженной деятельности органа или ткани, когда функциональные резервы систем транспорта и утилизации кислорода при отсутствии в них патологических изменений оказываются недостаточными для обеспечения резко увеличенной потребности в кислороде (чрезмерная мышечная работа, перегрузка сердца). Для перегрузочной гипоксии характерно образование «кислородного долга» при увеличении скорости доставки и потребления кислорода, а также скорости образования и выведения углекислоты, венозная гипоксемия, гиперкапния.

4.2.9. Смешанная гипоксия

Гипоксия любого типа, достигнув определенной степени, неизбежно вызывает нарушения функции различных органов и систем, участвующих в обеспечении доставки кислорода и его утилизации. Сочетание различных типов гипоксии наблюдается, в частности, при шоке, отравлении боевыми отравляющими веществами, заболеваниях сердца, коматозных состояниях и др.

5. Компенсаторно-приспособительные реакции

Первые изменения в организме при гипоксии связаны с включением реакций, направленных на сохранение гомеостаза (фаза компенсации). Если приспособительные реакции оказываются недостаточными, в организме развиваются структурно-функциональные нарушения (фаза декомпенсации). Различают реакции, направленные на приспособление к кратковременной острой гипоксии (срочные) и реакции, обеспечивающие устойчивое приспособление к менее выраженной, но длительно существующей или многократно повторяющейся гипоксии (реакции долговременного приспособления). Срочные реакции возникают рефлекторно вследствие раздражения рецепторов сосудистой системы и ретикулярной формации ствола мозга изменившимся газовым составом крови. Происходит увеличение альвеолярной вентиляции, ее минутного объема, за счет углубления дыхания, учащения дыхательных экскурсий, мобилизации резервных альвеол (компенсаторная одышка); учащаются сердечные сокращения, увеличиваются масса циркулирующей крови (за счет выброса крови из кровяных депо), венозный приток, ударный и минутный объем сердца, скорость кровотока, кровоснабжение мозга, сердца и других жизненно важных органов и уменьшается кровоснабжение мышц, кожи и др. (централизация кровообращения); повышается кислородная емкость крови за счет усиленного вымывания эритроцитов из костного мозга, а затем и активация эритропоэза, повышаются кислородсвязывающие свойства гемоглобина. Оксигемоглобин приобретает способность отдавать тканям большее количество кислорода даже при умеренном снижении рО 2 в тканевой жидкости, чему способствует развивающийся в тканях ацидоз (при котором оксигемоглобин легче отдает кислород); ограничивается активность органов и тканей, непосредственно не участвующих в обеспечении транспорта кислорода; повышается сопряженность процессов биологического окисления и фосфорилирования, усиливается анаэробный синтез АТФ за счет активации гликолиза; в различных тканях увеличивается продукция оксида азота, что ведет к расширению прекапиллярных сосудов, снижению адгезии и агрегации тромбоцитов, активации синтеза стресс-белков, защищающих клетку от повреждения. Важной приспособительной реакцией при гипоксии является активация гипоталамо-гипофизарно-надпочечниковой системы (стресс – синдром), гормоны которой (глюкокортикоиды), стабилизируя мембраны лизосом, снижают тем самым повреждающее действие гипоксического фактора, и препятствуют развитию гипоксического некробиоза, повышая устойчивость тканей к недостатку кислорода.

Компенсаторные реакции при гипероксической гипоксии направлены на предупреждение возрастания напряжения кислорода в артериальной крови и в тканях ─ ослабление легочной вентиляции и центрального кровообращения, снижение минутного объема дыхания и кровообращения, частоты сердечных сокращений, ударного объема сердца, уменьшение объема циркулирующей крови, ее депонирование в паренхиматозных органах; понижение артериального давления; сужение мелких артерий и артериол мозга, сетчатки глаза и почек, наиболее чувствительных как к недостатку, так и к избытку кислорода. Эти реакции в целом обеспечивают соответствие потребности тканей в кислороде.

6. Нарушения основных физиологических функций и обмена веществ

Наиболее чувствительна к кислородному голоданию нервная ткань. При полном прекращении снабжения кислородом признаки нарушения в коре больших полушарий обнаруживаются уже через 2,5-3 мин. При острой гипоксии первые расстройства (особенно четко проявляющиеся при гипоксической ее форме) наблюдаются со стороны высшей нервной деятельности (эйфория, эмоциональные расстройства, изменения почерка и пропуски букв, притупление и потеря самокритики, которые затем сменяются депрессией, угрюмостью, сварливостью, драчливостью). С нарастанием острой гипоксии вслед за активацией дыхания возникают различные нарушения ритма, неравномерность амплитуды дыхательных движений, редкие, короткие дыхательные экскурсии постепенно ослабевающие до полного прекращения дыхания. Возникает тахикардия, усиливающаяся параллельно ослаблению деятельности сердца, затем – нитевидный пульс, фибрилляция предсердий и желудочков. Систолическое давление постепенно понижается. Нарушаются пищеварение и функция почек. Снижается температура тела.

Универсальный, хотя и неспецифический признак гипоксических состояний, гипоксического повреждения клеток и тканей – повышение пассивной проницаемости биологических мембран, их дезорганизация, что ведет к выходу ферментов в межтканевую жидкость и кровь, вызывая нарушения обмена веществ и вторичную гипоксическую альтерацию тканей.

Изменения в углеводном и энергетическом обмене приводят к дефициту макроэргов, уменьшению содержания АТФ в клетках, усилению гликолиза, снижению содержания гликогена в печени, угнетению процессов его ресинтеза; в результате в организме повышается содержание молочной и др. органических кислот. Развивается метаболический ацидоз. Недостаточность окислительных процессов приводит к нарушению обмена липидов и белков. Снижается концентрация в крови основных аминокислот, возрастает содержание в тканях аммиака, возникает отрицательный азотистый баланс, развивается гиперкетонемия, резко активируются процессы перекисного окисления липидов.

Нарушение обменных процессов приводит к структурно-функциональ-ным изменениям и повреждению клеток с последующим развитием гипоксического и совободно радикального некробиоза, гибели клеток, в первую очередь, нейронов.

6.1. Механизмы гипоксического некробиоза

Некробиоз – процесс отмирания клетки, глубокая, частично необратимая стадия повреждения клетки, непосредственно предшествующая ее смерти. По биохимическим критериям клетка считается погибшей с момента полного прекращения ею производства свободной энергии. Любое воздействие, вызывающее более или менее продолжительное кислородное голодание ведет к гипоксическому повреждению клетки. На начальном этапе этого процесса снижается скорость аэробного окисления и окислительного фосфорилирования в митохондриях. Это приводит к понижению количества АТФ, возрастанию содержания аденозиндифосфата (АДФ), и аденозинмонофосфата (АМФ). Уменьшается коэффициент АТФ/АДФ+АМФ, снижаются функциональные возможности клетки. При низком соотношении АТФ/АДФ+АМФ активируется фермент фосфорфруктокиназа (ФФК), что приводит к усилению реакции анаэробного гликолиза, клетка расходует гликоген, обеспечивая себя энергией за счет бескислородного распада глюкозы; Запасы гликогена в клетке истощаются. Активация анаэробного гликолиза ведет к снижению рН цитоплазмы. Прогрессирующий ацидоз вызывает денатурацию белков и помутнение цитоплазмы. Поскольку ФФК кислотоугнетаемый фермент, то в условиях гипоксии ослабляется гликолиз, формируется дефицит АТФ. При значительном дефиците АТФ процессы клеточного повреждения усугубляются. Наиболее энергоемкий фермент в клетке – калий-натриевая АТФ-аза. При дефиците энергии ограничиваются его возможности, в результате чего утрачивается нормальный калий-натриевый градиент; клетки теряют ионы калия, а вне клеток возникает его избыток – гиперкалиемия. Утрата калий-натриевого градиента означает для клетки уменьшение потенциала покоя, вследствие чего положительный поверхностный заряд, свойственный нормальным клеткам уменьшается, клетки становятся менее возбудимыми, нарушаются межклеточные взаимодействия, что и происходит при глубокой гипоксии. Последствие повреждения калий-натриевого насоса – проникновение избытка натрия в клетки, гипергидратация и набухание их, расширение цистерн эндоплазматического ретикулума. Гипергидратации способствует и накопление осмотически активных продуктов разрушения и усиленного катаболизма полимерных клеточных молекул. В механизме гипоксического некробиоза, особенно на глубоких стадиях, ключевую роль играет увеличение содержания ионизированного внутриклеточного кальция, избыток которого токсичен для клетки. Увеличение внутриклеточной концентрации кальция вначале обусловлено нехваткой энергии для работы кальций-магниевого насоса. При углублении гипоксии кальций попадает в клетку уже через входные кальциевые каналы наружной мембраны, а также массивным потоком из митохондрий, цистерн гладкого эндоплазматического ретикулума и через поврежденные клеточные мембраны. Это приводит к критическому нарастанию его концентрации. Длительный избыток кальция в цитоплазме ведет к активации Са ++ зависимых протеиназ, прогрессирующему цитоплазматическому протеолизу. При необратимом повреждении клетки в митохиндрии поступают значительные количества кальция, что приводит к инактивации их ферментов, денатурации белка, стойкой утрате способности к продукции АТФ даже при восстановлении притока кислорода или реперфузии. Таким образом, центральным звеном клеточной гибели является длительное повышение цитоплазматической концентрации ионизированного кальция. Гибели клеток способствуют и активные кислородсодержащие радикалы, образующиеся в большом количестве липоперекиси и гидроперекиси липидов мембран, а также гиперпродукция оксида азота, оказывающие на этом этапе повреждающее, цитотоксическое действие.

6.2. Дизбаризм

При очень быстром понижении барометрического давления (нарушение герметичности летательных аппаратов, быстрый подъем на высоту) развивается симптомокомплекс декомпрессионной болезни (дизбаризм), включающий следующие компоненты:

а) на высоте 3-4 тысячи метров – расширение газов и относительное увеличение их давления в замкнутых полостях тела – придаточных полостях носа, лобных пазухах, полости среднего уха, плевральной полости, желудочно-кишечном тракте («высотный метеоризм»), что ведет к раздражению рецепторов этих полостей, вызывая резкие боли («высотные боли»);

б) на высоте 9 тыс. м. – дессатурация (снижение растворимости газов), газовая эмболия, ишемия тканей; мышечно-суставные, загрудинные боли; нарушение зрения, кожный зуд, вегето-сосудистые и мозговые расстройства, поражение периферических нервов;

в) на высоте 19 тыс. м. (В=47 мм рт. ст., рО 2 – 10 мм рт. ст.) и более – процесс «кипения» в тканях и жидких средах при температуре тела, высотная тканевая и подкожная эмфизема (появление подкожных вздутий и боль).

7. Адаптация к гипоксии и дизадаптация

При многократно повторяющейся кратковременной или постепенно развивающейся и длительно существующей умеренной гипоксии развивается адаптация – процесс постепенного повышения устойчивости организма к гипоксии, в результате которого организм приобретает способность нормально осуществлять различные формы деятельности (вплоть до высших), в таких условиях недостатка кислорода, которые ранее этого «не позволяли».

При длительной адаптации к гипоксии формируются механизмы долговременного приспособления («системный структурный след»). К ним относятся: активация гипоталамо-гипофизарной системы и коры надпочечников, гипертрофия и гиперплазия нейронов дыхательного центра, гипертрофия и гиперфункция легких; гипертрофия и гиперфункция сердца, эритроцитоз, увеличение количества капилляров в мозге и сердце; повышение способности клеток к поглощению кислорода, связанное с увеличением числа митохондрий, их активной поверхности и химического средства к кислороду; активация антиоксидантной и детоксикационной систем. Эти механизмы позволяют адекватно обеспечивать потребность организма в кислороде, несмотря на его дефицит во внешней среде, трудности в доставке и снабжении тканей кислородом. В их основе лежит активация синтеза нуклеиновых кислот и белка. В случае длительно продолжающейся гипоксии, ее углублении происходит постепенное истощение адаптационных возможностей организма, может развиться их несостоятельность и наступить «срыв» реакции долговременной адаптации (дизадаптация) и даже декомпенсация, сопровождающаяся нарастанием деструктивных изменений в органах и тканях, рядом функциональных нарушений, проявляющаяся синдромом хронической горной болезни.

Литература

Основная:

1. Патологическая физиология. Под ред. А.Д. Адо и В.В. Новицкого, Изд-во Томского ун-та, Томск, 1994, с. 354-361.

2. Патологическая физиология. Под ред. Н.Н. Зайко и Ю.В. Быця. – Киев, «Логос», 1996, с. 343-344.

3. Патофизиология. Курс лекций. Под ред. П.Ф. Литвицкого. – М., Медицина, 1997, с. 197-213.

Дополнительная:

1. Зайчик А.Ш., Чурилов А.П. Основы общей патологии, часть 1, СПб, 1999. – Элби, с. 178-185.

2. Гипоксия. Адаптация, патогенез, клиника. Под общ. ред. Ю.Л.Шевченко. – СПб, ООО «Элби-СПБ», 2000, 384 с.

3. Руководство по общей патологии. Под ред. Н.К. Хитрова, Д.С. Саркисова, М.А. Пальцева. – М. Медицина, 1999. – С. 401-442.

4. Шанин В.Ю. Клиническая патофизиология. Учебник для медицинских вузов. – СПб: «Специальная литература», 1998, с. 29-38.

5. Шанин В.Ю. Типовые патологические процессы. – СПб: Специальная литература, 1996, - с. 10-23.


1. Мотивационная характеристика темы. Цель и задачи занятия.......... 3

2. Контрольные вопросы по смежным дисциплинам.............................. 5

3. Контрольные вопросы по теме занятия............................................... 5

4. Гипоксия

4.1. Определение понятия, виды гипоксий........................................ 6

4.2. Этиология и патогенез гипоксий................................................ 7

5. Компенсаторно-приспособительные реакции..................................... 12

6. Нарушения основных физиологических функций и обмена веществ. 14

6.1. Механизмы гипоксического некробиоза...................................... 16

6.2. Дизбаризм...................................................................................... 18

7. Адаптация к гипоксии и дизадаптация................................................ 19

8. Литература............................................................................................ 20

Оренбургский Государственный Университет

Факультет Информационных Технологий

Кафедра ИСТ

Реферат

Тренировка и спорт в условиях гипоксии

Выполнил:

Загоруй А.С.

группа 02ИСТ

Оренбург, 2002

Воспитание физических качеств основывается на постоянном стремлении сделать сверх возможное для себя, удивить окружающих своими возможностями. Но для этого со времени рождения нужно постоянно и регулярно выполнять правила правильного физического воспитания. И этому постоянно мешает некоторым людям типический патологический процесс называемый:

Гипоксия (от гипо... и лат. oxygenium - кислород) (кислородное голодание), пониженное содержание кислорода в организме или отдельных органах и тканях. Возникает при недостатке кислорода во вдыхаемом воздухе или в крови (гипоксемия), при нарушении биохимических процессов тканевого дыхания и другого.

И она оказывает влияние на активность иммунной системы насыщенности тканей кислородом. Кислородное голодание (гипоксия) может вызываться: обездвиженностью, сердечно-сосудистыми заболеваниями. Недостаточность клеточного дыхания встречается у большинства городских жителей. Что бы этого ни происходило организация и руководство физическим воспитанием особенно в годы учебы, процесс обучения организуется в зависимости от состояния здоровья, уровня физического развития и подготовленности студентов, их спортивной квалификации, а также с учётом условий и характера труда их предстоящей профессиональной деятельности. Одной из главных задач высших учебных заведений является физическая подготовка студентов. Непосредственная ответственность за постановку и проведение учебно-воспитательного процесса по физическому воспитанию студентов в соответствии с учебным планом и государственной программы возложена на кафедру физического воспитания вуза. Массовая оздоровительная, физкультурная и спортивная работа проводится спортивным клубом совместно с кафедрой и общественными организациями.

Медицинское обследование и наблюдение за состоянием здоровья студентов в течение учебного года осуществляется поликлиникой или здравпунктом вуза и это, наверное, поможет предотвратить хотя бы один из видов гипоксии :

В основу классификации гипоксии, которая приводится ниже, положены причины и механизмы ее развития. Различают следующие виды гипоксии: гипоксическую, дыхательную, гемическую, циркуляторную тканевую и смешанную.
Гипоксическая, или экзогенная , гипоксия развивается при снижении парциального давления кислорода во вдыхаемом воздухе. Наиболее типичным примером гипоксической гипоксии может служить горная болезнь. Ее проявления находятся в зависимости от высоты подъема. В эксперименте гипоксическая гипоксия моделируется при помощи барокамеры, а также с использованием дыхательных смесей, бедных кислородом.

Это значит, что легкие неспособны накачивать воздух из-за отсутствия оного во внешней среде, блокирования верхних дыхательных путей или опадания самих легких. Таким образом, возможными причинами нарушения наружного дыхания могут быть:

o утопление, т.е. наполнение легких водой;

o отсутствие воздуха в акваланге;

o спазмы или засорение дыхательных путей водой, рвотой и посторонними частицами;

o спадание легких в результате пневмоторакса;

o повреждение альвеол при попадании в легкие воды.

Данный тип гипоксии нередко встречается на соревнованиях по подводной охоте и в других случаях, когда спортсмены и любители стараются нырнуть с задержкой дыхания поглубже и подольше. Гипервентиляция перед нырянием понижает уровень СО 2 в крови, тем самым подавляя рефлексы вдоха. При быстром подъеме объем легких расширяется, и содержание 0^ резко падает, что вызывает общую гипоксию и потерю сознания. За потерей сознания под водой неминуемо следует утопление.

Дыхательная, или респираторная , гипоксия возникает в результате нарушения внешнего дыхания, в частности нарушения легочной вентиляции, кровоснабжения легких или диффузии в них кислорода, при которых страдает оксигенация артериальной крови.

Кровяная, или гемическая, гипоксия возникает в связи с развитием нарушений в системе крови, в частности с уменьшением кислородной емкости ее. Гемическая гипоксия подразделяется на анемическую и гипоксию вследствие инактивации гемоглобина. В патологических условиях возможно образование таких соединений гемоглобина, которые не могут выполнять дыхательную функцию. Таким является карбоксигемоглобин ≈ соединение гемоглобина с окисью углерода. Сродство гемоглобина к окиси углерода в 300 раз выше, чем к кислороду, что обусловливает высокую ядовитость угарного газа: отравление наступает при ничтожных концентрациях окиси углерода в воздухе. При этом инактивируется не только гемоглобин, но и железосодержащие дыхательные ферменты. При отравлении нитритами, анилином образуется метгемоглобин, в котором трехвалентное железо не присоединяет кислород.

Гистотоксическая гипоксия: неспособность клеток воспринимать принесенный кровью кислород. Нарушение клеточного дыхания возможно в случае общего отравления организма - например, цианидами или ядом некоторых медуз.

Циркуляторная гипоксия развивается при местных и общих нарушениях кровообращения, причем в ней можно выделить ишемическую и застойную формы.
Если нарушения гемодинамики развиваются в сосудах большого круга кровообращения, насыщение крови кислородом в легких может быть нормальным, однако при этом может страдать доставка его тканям. При нарушениях гемодинамики в системе малого круга страдает оксигенация артериальной крови. Циркуляторная гипоксия может быть вызвана не только абсолютной, но и относительной недостаточностью кровообращения, когда потребность тканей в кислороде превышает его доставку. Такое состояние может возникнуть, например, в сердечной мышце при эмоциональных напряжениях, сопровождающихся выделением адреналина, действие которого хотя и вызывает расширение венечных артерий, но в то же время значительно повышает потребность миокарда в кислороде.

Часто встречаемая форма гипоксии - локальная. Замерзание конечностей при низкой температуре есть не что иное, как следствие замедления периферической циркуляции крови. Если оно продолжается, локальная гипоксия может вызвать необратимое омертвление клеток конечности - отмораживание. Гипоксическая кровь темного цвета, что, кстати, хороша видно при посинении пальцев, ушей и губ на морозе. Посинение языка означает наступление общей гипоксии.

Профилактика: Во избежание общей или локальной гипоксии следует придерживаться следующих правил поведения:

o Проверяйте свое снаряжение перед каждым погружением.

o Не погружайтесь в одиночку, а только в паре или группе.

o Постоянно контролируйте запас воздуха под водой.

o Не злоупотребляйте гипервентиляцией перед нырянием.

Гемическая гипоксия : неспособность крови транспортировать кислород при нормальной циркуляции в сосудах.

Такое случается при заболеваниях крови, влияющих на активность гемоглобина, а также после значительной потери крови при ранениях и повреждениях кровеносной системы.

Кислородное голодание тканей в результате нарушения микроциркуляции, которая, как известно, представляет собой капиллярный крово- и лимфоток, а также транспорт через капиллярную сеть и мембраны клеток.
Тканевая гипоксия ≈ это нарушения в системе утилизации кислорода. При этом виде гипоксии страдает биологическое окисление на фоне достаточного снабжения тканей кислородом. Причинами тканевой гипоксии являются снижение количества или активности дыхательных ферментов, разобщение окисления фосфорелирования.

Классическим примером тканевой гипоксии, при которой происходит инактивация дыхательных ферментов, в частности, цитохромоксидазы ≈ конечного фермента дыхательной цепи, является отравление цианидами, монойодацетатом. Алкоголь и некоторые наркотики (эфир, уретан) в больших дозах угнетают дегидрогеназы.
Снижение синтеза дыхательных ферментов, вызывающее тканевую гипоксию, наблюдается при авитаминозах. Особенно важен в этом отношении синтез рибофлавина и никотиновой кислоты, первый из которых является простетической группой флавиновых ферментов, а второй входит в состав кодегидрогеназ.

При разобщении окисления и фосфорилирования снижается эффективность биологического окисления, энергия рассеивается в виде свободного тепла, ресинтез макроэргических соединений снижается. Энергетическое голодание и метаболические сдвиги подобны тем, которые возникают при кислородном голодании.
В возникновении тканевой гипоксии может иметь значение активация перекисного свободнорадикального окисления, при котором органические вещества подвергаются неферментативному окислению молекулярным кислородом. Перекиси липидов вызывают дестабилизацию мембран, в частности, митохондрий и лизосом. Активация свободнорадикального окисления, а следовательно и тканевой гипоксии, наблюдается при дефиците его естественных ингибиторов (токоферолов, рутина, убихинона, глутатиона, серотонина, некоторых стероидных гормонов), при действии ионизирующего излучения, при повышении атмосферного давления.

Перечисленные выше отдельные виды кислородного голодания встречаются редко, чаще наблюдаются различные их комбинации. Например, хроническая гипоксия любого генеза обычно осложняется поражением дыхательных ферментов и присоединением кислородной недостаточности тканевого характера. Это дало основание выделить шестой вид гипоксии - смешанную гипоксию.
Выделяют еще гипоксию нагрузки, которая развивается на фоне достаточного или даже повышенного снабжения тканей кислородом. Однако повышенное функционирование органа и значительно возросшая потребность в кислороде могут привести к неадекватному кислородному снабжению и развитию метаболических нарушений, характерных для истинной кислородной недостаточности. Примером могут служить чрезмерные нагрузки в спорте, интенсивная мышечная работа.

Кислородное отравление: Жизнедеятельность человеческого организма и внутренние процессы, ее обуславливающие, тонко рассчитаны на потребление кислорода в определенном количестве. Избыток кислорода, равно как и его недостаток, вреден для организма. Превышение парциального давления О 2 величины в 1,8 атм. при длительной экспозиции делает газ токсичным для легких и головного мозга. Механизм токсичного воздействия 0 2 заключается в нарушении биохимического баланса тканевых клеток, в особенности, нервных клеток мозга.

Подавляющее большинство аквалангистов - любителей могут не опасаться кислородного отравления - превышение допустимого парциального давления при дыхании сжатым воздухом происходит на глубинах 130 - 140 м. Более реальна угроза для профессиональных подводников, использующих для дыхания регенерационное снаряжение или газовые смеси с повышенным содержанием О 2 - такие как нитрокс (О 2 ; в сочетании с азотом), гелиокс (О 2 /Не), тримикс (O 2 /N 2 /He) и другие.

Другой причиной кислородного отравления может стать дыхание чистым кислородом продолжительностью более 18-24 ч при оказании первой помощи и дыхание в неправильном режиме во время ре-компрессионного лечения в барокамере. Но это уж будет на совести лечащего врача.

К одной разновидности гипоксии относиться: Патогенез: Компенсаторные приспособления при гипоксии. При гипоксии различают компенсаторные приспособления в системах транспорта и утилизации кислорода. Кроме того, выделяют механизмы «борьбы за кислород» и приспособления к условиям пониженного тканевого дыхания.
Увеличение легочной вентиляции, как одна из компенсаторных реакций при гипоксии, происходит в результате рефлекторного возбуждения дыхательного центра импульсами с хеморецепторов сосудистого русла, главным образом синокаротидной и аортальной зон, которые обычно реагируют на изменение химического состава крови и в первую очередь на накопление углекислоты пионов водорода. При гипоксической гипоксии патогенез одышки несколько иной ≈ раздражение хеморецепторов происходит в ответ на снижение в крови парциального давления кислорода. Гипервентиляция является, несомненно, положительной реакцией организма на высоту, но имеет и отрицательные последствия, поскольку осложняется выведением углекислоты и снижением содержания ее в крови.

Таким образом, одышка в горах протекает на фоне не повышенного, а пониженного содержания СО; в крови ≈ гипокапнии. Понимание этого факта очень важно. Если принять во внимание влияние углекислоты на мозговое и коронарное кровообращение, регуляцию тонуса дыхательного и вазомоторного центров, поддержание кислотно-основного равновесия, диссоциацию оксигемоглобина, то становится ясным, какие важные показатели могут нарушаться при гипокапнии. Все это означает, что при рассмотрении патогенеза горной болезни гипокапнии следует придавать такое же значение, как и гипоксии.

При гипоксии также наблюдается мобилизация функции системы кровообращения, направленная на усиление доставки кислорода тканям (гиперфункция сердца, увеличение скорости кровотока, раскрытие нефункционирующих капиллярных сосудов). Не менее важной характеристикой кровообращения в условиях гипоксии является перераспределение крови в сторону преимущественного кровоснабжения жизненно важных органов и поддержание оптимального кровотока в легких, сердце, головном мозге за счет уменьшения кровоснабжения кожи, селезенки, мышц, кишок, которые в данных обстоятельствах играют роль депо крови. Перечисленные изменения кровообращения регулируются рефлекторными и гормональными механизмами. Кроме того, продукты нарушенного обмена (гистамин, адениновые нуклеотиды, молочная кислота), оказывая сосудорасширяющее действие, действуя на тонус сосудов также являются важными тканевыми факторами приспособительного перераспределения крови.
Повышение количества эритроцитов и гемоглобина увеличивает кислородную емкость крови. Выброс крови из депо может обеспечить экстренной, но непродолжительное приспособление к гипоксии. При более длительной гипоксии усиливается эритропоэз в костном мозге, о чем свидетельствует появление ретикулоцитов в крови, увеличение количества митозов в нормобластах и гиперплазия костного мозга.

Прежде существовало мнение, что гипоксия сама по себе стимулирует гемопоэ. В насюящее время считают, что гипоксия прямо или косвенно способствует разрушению гемоглобина и эритроцитов, а образующиеся при этом продумы распада играют роль факторов, стимулирующих синтез гемоглобина и образование эритроцитов. Это представление подкрепляется данными о том, что увеличению количества эритроцитов в крови предшествует его снижение, а также появление признаков их распада ≈ отложение железосодержащего пигмента в селезенке и повышенное выделение его с мочой. Теперь установлено, что в качестве стимуляторов эритропоэза при гипоксии выступают также эритропоэтины почек. Они стимулируют пролиферацию клеток эритробластнческого ряда костного мозга.

По некоторым данным, при гипоксии повышается способность молекулы гемоглобина присоединять кислород в легких и отдавать его тканям.
Механизмы адаптации к гипоксии. Описанные выше приспособительные изменения развиваются в наиболее реактивных системах организма, ответственных за транспорт кислорода и его распределение. Однако аварийная гиперфункция внешнего дыхания и кровообращенияния не может обеспечить стойкого и длительного приспособления к гипоксии, так как требует для своего осуществления повышенного, потребления кислорода, сопровождается повышением интенсивности функционирования структур и усилением распада белков. Аварийная гиперфункция требует со временем структурного и энергетического подкрепления, что обеспечивает не простое выживание, а возможность активной физической и умственной работы при длительной гипоксии.
В настоящее время к этому аспекту приковано наиболее пристальное внимание исследователей. Предметом изучения являются горные и ныряющие животные, коренные жители высокогорных районов, а также экспериментальные животные с компенсаторными приспособлениями к гипоксии, выработанными в течение нескольких поколений.

Установлено, что в системах, ответственных за транспорт кислорода развиваются явления гипертрофии и гиперплазии ≈ увеличивается масса дьгхательных мышц, легочных яльвеол, миокарда, нейронов дыхательного центра; усиливается кровоснабжение этих органов за счет увеличения количества функционирующих капиллярных сосудов и их гипертрофии (увеличения диаметра и длины). Это приводит к нормализации интенсивности функционирования структур. Гиперплазию костного мозга тоже можно рассматривать как пластическое обеспечение гиперфункции системы крови.

Получены данные о том, что при длительной акклиматизации к высотной гипоксии улучшаются условия диффузии кислорода из альвеолярного воздуха в кровь благодаря повышению проницаемости легочно-капиллярных мембран, увеличивается содержание миоглобина, который представляет собой не только дополнительную кислородную емкость, но и обладает ферментативной активностью в окислительных процессах.
Большой интерес представляют собой адаптационные изменения в системе утилизации кислорода. Здесь принципиально возможно следующее:

1) усиление способности тканевых ферментов утилизировать кислород, поддерживать достаточно высокий уровень окислительных процессов и осуществлять вопреки гипоксемии нормальный синтез АТФ;
2) более эффективное использование энергии окислительных процессов (в частности, в ткани головного мозга установлено повышение интенсивности окислительного фосфорнлирования за счет большего сопряжения этого процесса с окислением);
3) усиление процессов бескислородного освобождения энергии при помощи гликолиза (последний активизируется продуктами распада АТФ и ослаблением ингибирующего влияния АТФ на ключевые ферменты гликолиза).

На первом из этих положений следует остановиться более подробно. Существует предположение, что в процессе длительной адаптации к гипоксии происходят качественные изменения конечного фермента дыхательной цепи ≈ цитохромоксидазы, а возможно, и других дыхательных ферментов, в результате чего повышается их сродство к кислороду (3. И. Барбашова). Другой механизм адаптации к гипоксии заключается в увеличении количества дыхательных ферментов и мощности системы митохондрий путем увеличения количества митохондирий.
В объяснении патогенеза этих явлений предполагается следующая цепь, некоторые звенья которой установлены, а другие еще требуют дальнейшего изучения. Начальным звеном является торможение окисления и окислительного ресинтеза аденозинтрифосфорной кислоты при недостатке кислорода, в результате чего в клетке уменьшается количество макроэргов и соответственно увеличивается количество продуктов их распада. Масса митохондрий увеличивается, а это означает увеличение числа дыхательных цепей. Таким путем восстанавливается или увеличивается способность клетки вырабатывать энергию вопреки недостатку кислорода в притекающей крови.

Описанные процессы происходят главным образом в органах с наиболее интенсивной адаптационной гиперфункцией при гипоксии, т.е. ответственных за транспорт кислорода (легкие, сердце, дыхательные мышцы, эритробластический росток костного мозга), а также наиболее страдающих от недостатка кислорода (кора большого мозга, нейроны дыхательного центра). В этих же органах увеличивается синтез структурных белков, приводящий к явлениям гиперплазии и гипертрофии. Таким образом длительная гиперфункция систем транспорта и утилизации кислорода получает при гипоксии пластическое и энергетическое обеспечение (Ф. 3. Меерсон). Эта фундаментальная перемена на клеточном уровне меняет характер адаптационного процесса при гипоксии. Расточительная гиперфункция внешнего дыхания, сердца и кроветворения становится излишней. Развивается устойчивая и экономная адаптация.

Повышению устойчивости тканей к гипоксии способствует активизация гипоталамо-гипофизарной системы и коры надпочечных желез. Гликокортикоиды активизируют некоторые ферменты дыхательной цепи, стабилизируют мембраны лизосом.
При разных видах гипоксии соотношение между описанными реакциями может быть различным. Так, например, при дыхательной и циркуляторной гипоксии ограничены возможности приспособления в системе внешнего дыхания и кровообращения. При тканевой гипоксии не эффективны приспособительные явления в системе транспорта кислорода.

Патологические нарушения при гипоксии. Нарушения, характерные для гипоксии, развиваются при недостаточности или истощении приспособительных механизмов. Однако следует иметь в виду, что гипоксия, как и любой другой патологический процесс, представляет собой тесное переплетение явлений собственно патологических и защитно-приспособительных, и если последние не перекрывают повреждений, вызванных гипоксией, развивается кислородная недостаточность.
Окислительно-восстановительные процессы, как известно, являются механизмом получения энергии, необходимой для всех процессов жизнедеятельности. Сохранение этой энергии происходит в фосфорных соединениях, содержащих макроэргическне связи. Биохимические исследования при гипоксии выявили уменьшение содержания этих соединений в тканях. Таким образом, недостаток кислорода приводит к энергетическому голоданию тканей, что лежит в основе всех нарушений при гипоксии.

При недостатке кислорода происходит нарушение обмена веществ и накопление продуктов неполного окисления, многие из которых являются токсическими. В печени и мышцах, например, уменьшается количество гликогена, а образующаяся глюкоза не окисляется до конца. Молочная кислота, которая при этом накапливается, может изменять кислотно-основное равновесие в сторону ацидоза. Обмен жиров также происходит с накоплением промежуточных продуктов ≈ ацетона, ацетоуксусной и гидроксимасляной кислот. Накапливаются промежуточные продукты белкового обмена.

Увеличивается содержание аммиака, снижается содержание глутамина, нарушается обмен фосфопротеидов и фосфолипидов, устанавливается отрицательный азотистый баланс. Изменения электролитного обмена заключаются в нарушении активного транспорта ионов через биологические мембраны, снижении количества внутриклеточного калия. Нарушается синтез нервных медиаторов.
Чувствительность различных органов и тканей к недостатку кислорода неодинакова и находится в зависимости от следующих факторов:

1) интенсивности обмена веществ, т. е. потребности ткани в кислороде;
2) мощности ее гдиколитической системы, т. е. способности вырабатывать энергию без участия кислорода;
3) запасов энергии в виде макроэргических соединений;
4) потенциальной возможности генетического, аппарата обеспечивать пластическое закрепление гиперфункции.

Co всех этих точек зрения в самых неблагоприятных условиях находится нервная система, и это объясняет, почему пеовыми признаками кислородного голодания являются нарушения нервной деятельности. Еще до появления грозных симптомов кислородного голодания возникает эйфория. Это состояние характеризуется эмоциональным и двигательным возбуждением, ощущением самодовольства и собственной силы, а иногда, наоборот, потерей интереса к окружающему, неадекватностью поведения. Причина этих явлений лежит в нарушении процессов внутреннего торможения. Будучи филогенетически более молодым процессом, внутреннее торможение обнаруживает и наибольшую ранимость при кислородной недостаточности.
При длительной гипоксии наблюдаются более тяжелые обменные и функциональные нарушения и центральной нервной системе. Развивается торможение, нарушается рефлекторная деятельность, расстраивается регуляция дыхания и кровообращения. Потеря сознания и судороги являются грозными симптомами тяжелого течения кислородного голодания.
Нарушения в других органах и системах при гипоксии находятся в тесной зависимости от нарушения регуляторной деятельности центральной нервной системы, энергетического голодания и накопления токсических продуктов обмена веществ.

По чувствительности к кислородному голоданию второе место после нервной системы занимает сердечная мышца. Проводящая система сердца более устойчива, чем сократительные элементы. Нарушения возбудимости, проводимости и сократимости миокарда клинически проявляются тахикардией и аритмией. Недостаточность сердца, а также снижение тонуса сосудов в результате нарушения деятельности вазомоторного центра приводят кгипотензиии общему нарушению кровообращения. Последнее обстоятельство сильно осложняет течение патологического процесса, какой бы ни была первоначальная причина гипоксии.
Нарушение внешнего дыхания заключается в нарушении легочной вентиляции. Изменение ритма дыхания часто приобретает характер периодического дыхания Чейна ≈ Стокса. Особое значение имеет развитие застойных явлений в легких. При этом альвеолярно-капиллярная мембрана утолщается, в ней развивается фиброзная ткань, ухудшается диффузия кислорода из альвеолярного воздуха в кровь.
В пищеварительной системе наблюдается угнетение моторики, снижение секреции пищеварительных соков желудка, кишок и поджелудочной железы.
Первоначальная полиурия сменяется нарушением фильтрационной способности почек.
В тяжелых случаях гипоксии снижается температура тела, что объясняется понижением обмена веществ и нарушением терморегуляции. В коре надпочечных желез первоначальные признаки активации сменяются истощением.

Более глубокий анализ описанных выше изменений при гипоксии приводит к заключению о том, что одни и те же явления, будучи с одной стороны патологическими, с другой ≈ могут быть оценены как приспособительные. Так, нервная система, обладая высокой чувствительностью к кислородному голоданию, имеет эффективное защитное приспособление в виде охранительного торможения, а это, являясь следствием гипоксии, в свою очередь снижает чувствительность нервной системы к дальнейшему развитию кислородного голодания. Снижение температуры тела и обмена веществ может быть оценено подобным же образом.

Повреждение и защита при гипоксии тесно переплетены, но именно повреждение становится начальным звеном компенсаторного приспособления. Так, снижение рО2 в крови вызывает раздражение хеморецепторов и мобилизацию внешнего дыхания и кровообращения. Именно гипоксическое повреждение клетки, дефицит АТФ являются начальным звеном в событиях, которые в итоге приводят к активации биогенеза митохондрий и других структур клетки и развитию устойчивой адаптации к гипоксии.

Переносимость гипоксии зависит от многих причин, в том числе от возраста. Высокую устойчивость новорожденных животных к кислородному голоданию можно продемонстрировать следующим опытом. Если взрослую крысу и новорожденного крысенка одновременно подвергнуть в барокамере действию разреженного воздуха, первой погибнет взрослая крыса, в то время как крысенок еще долго остается живым. Это объясняется тем, что автоматическая деятельность дыхательного центра новорожденного при гипоксии может поддерживаться более старой и примитивной формой обмена ≈ анаэробным расщеплением углеводов. Установлено также, что новорожденный обладает некоторым запасом фетального гемоглобина, который способен выполнять дыхательную функцию при пониженном парциальном давлении кислорода в крови. Однако решающее значение в высокой устойчивости новорожденного к кислородному голоданию имеет менее высокий уровень развития центральной нервной системы. То же можно сказать и о животных, находящихся на ранних ступенях эволюционного развития. Таким образом, в процессе эволюционного и онтогенетического развития наблюдается повышение чувствительности к недостатку кислорода и одновременно развитие более сложных приспособительных реакций.

При некоторых состояниях, характеризующихся глубоким торможением центральной нервной системы и снижением обмена веществ (сон, наркоз, гипотермия, зимняя спячка), понижена чувствительность организма к недостатку кислорода.
Переносимость гипоксии можно повысить искусственно. Первый способ заключается в снижении реактивности организма и его потребности в кислороде (наркоз, гипотермия), второй ≈ в тренировке, укреплении и более полном развитии приспособительных реакций в условиях барокамеры или высокогорья. Заслуга разработки метода ступенчатой акклиматизации к высокогорному климату принадлежит Н. Н. Сиротинину.

Тренировка к гипоксии повышает устойчивость организма не только к данному воздействию, но и ко многим другим неблагоприятным факторам, в частности, к физической нагрузке, изменению температуры внешней среды, к инфекции, отравлениям, воздействию ускорения, ионизирующего излучения. Иными словами, тренировка к гипоксии повышает общую неспецифическую резистентность организма.
Терапия гипоксии должна включать комплекс мероприятий, зависящих от вида, стадии и степени гипоксии, а также от особенностей ответной реакции организма на гипоксию. На первом месте стоит ликвидация основной причины, вызвавшей кислородное голодание. В тех случаях когда в организме не нарушена утилизация кислорода тканями, решающим фактором является введение кислорода. При ряде заболеваний применяют кислород под повышенным давлением (гипербарическая оксигенация). Это создает запасы кислорода, физически растворенного в крови и тканях. Данный способ применим при отравлении угарным газом и барбитуратами, при врожденных пороках сердца, а также во время операций на сухом сердце, т. е. в условиях временной остановки кровообращения и дыхания.

При умеренной гипоксии может иметь значение стимуляция нервной системы с целью усиления защитных реакций со стороны дыхательной системы и системы кровообращения. Патогенетически оправдано применение гормонов коры надпочечных желез и гипофиза, повышающих общую резистентность организма. Большое значение имеют мероприятия, направленные на коррекцию патологических нарушений при гипоксии, на обезвреживание токсических продуктов анаэробного обмена.
Проводится большая работа по изысканию специфических противогипоксических препаратов, корригирующих нарушения на тканевом и клеточном уровнях. Разрабатываются искусственные переносчики электронов в цепи дыхательных ферментов (препараты, подобные цитохрому С, гидрохинону). Синтезируются средства, способные ингибировать свободнорадикальное окисление, а также повышающие степень сопряжения окисления и фосфорилирования. Проводятся испытания фосфорилированных углеводов, которые создают возможность анаэробного образования АТФ. Целесообразно введение веществ, усиливающих гликолиз и снижающих потребность организма в кислороде. Перспективно также изыскание химических веществ, выступающих в роли индукторов генетического аппарата, ответственного за формирование структурной основы долговременной адаптации к гипоксии.

Чтобы этого не происходило надо проводить физиологические основы оздоровительной тренировки:

Система физических упражнений, направленных на повышение функционального состояния до необходимого уровня (100% ДМПК и выше), называется оздоровительной, или физической, тренировкой (за рубежом - кондиционная тренировка). Первоочередной задачей оздоровительной тренировки является повышение уровня физического состояния до безопасных величин, гарантирующих стабильное здоровье. Важнейшей целью тренировки для людей среднего и пожилого возраста является профилактика сердечно-сосудистых заболеваний, являющихся основной причиной нетрудоспособности и смертности в современном обществе. Кроме того, необходимо учитывать возрастные физиологические изменения в организме в процессе инволюции. Все это обусловливает специфику занятий оздоровительной физической культурой и требует соответствующего подбора тренировочных нагрузок, методов и средств тренировки.

В оздоровительной тренировке (так же, как и в спортивной) различают следующие основные компоненты нагрузки, определяющие ее эффективность: тип нагрузки, величину нагрузки, продолжительность (объем) и интенсивность, периодичность занятий (количество раз в неделю), продолжительность интервалов отдыха между занятиями. И также определять тип нагрузки:

Характер воздействия физической тренировки на организм зависит, прежде всего, от вида упражнений, структуры двигательного акта. В оздоровительной тренировке различают три основных типа упражнений, обладающих различной избирательной направленностью:

1 тип - циклические упражнения аэробной направленности, способствующие развитию общей выносливости;

2 тип - циклические упражнения смешанной аэробно- анаэробной направленности, развивающие общую и специальную (скоростную) выносливость;

3 тип - ациклические упражнения, повышающие силовую выносливость. Однако оздоровительным и профилактическим эффектом в отношении атеросклероза и сердечно-сосудистых заболеваний обладают лишь упражнения, направленные на развитие аэробных возможностей и общей выносливости. (Это положение особо подчеркивается в рекомендациях Американского института спортивной медицины.) В связи с этим основу любой оздоровительной программы для людей среднего и пожилого возраста должны составлять циклические упражнения, аэробной направленности.

Исследования Б. А. Пироговой (1985) показали, что решающим фактором, определяющим физическую работоспособность людей среднего возраста, является именно общая выносливость, которая оценивается по величине МПК.

В среднем и пожилом возрасте на фоне увеличения объема упражнений для развития общей выносливости и гибкости снижается необходимость в нагрузках скоростно-силового характера (при полном исключении скоростных упражнений). Кроме того, у лиц старше 40 лет решающее значение приобретает снижение факторов риска ИБС (нормализация холестеринового обмена, артериального давления и массы тела), что возможно только при выполнении упражнений аэробной направленности на выносливость. Таким образом, основной тип нагрузки, используемый в оздоровительной физической культуре, аэробные циклические упражнения. Наиболее доступным и эффективным из них является оздоровительный бег. В связи с этим физиологические основы тренировки будут рассмотрены на примере оздоровительного бега. В случае использования других циклических упражнений сохраняются те же принципы дозировки тренировочной нагрузки.

По степени воздействия на организм в оздоровительной физической культуре (так же, как и в спорте) различают пороговые, оптимальные, пиковые нагрузки, а также сверх нагрузки. Однако эти понятия относительно физической культуры имеют несколько иной физиологический смысл.

Пороговая нагрузка - это нагрузка, превышающая уровень привычной двигательной активности, та минимальная величина тренировочной нагрузки, которая дает необходимый оздоровительный эффект: возмещение недостающих энергозатрат, повышение функциональных возможностей организма и снижение факторов риска. С точки зрения возмещения недостающих энергозатрат пороговой является такая продолжительность нагрузки, такой объем бега, которые соответствуют расходу энергии не менее 2000 ккал в неделю. Такой расход энергии обеспечивается при беге продолжительностью около 3 ч (3 раза в неделю по 1 ч), или 30 км бега при средней скорости 10 км/ч, так как при беге в аэробном режиме расходуется примерно 1 ккал/кг на 1 км пути (0,98 у женщин и1.08 ккал/кг у мужчин).

Повышение функциональных возможностей наблюдается у начинающих бегунов при недельном объеме медленного бега, равном 15 км. Американские и японские ученые наблюдали повышение МПК на 14 "/о после завершения 12-недельной тренировочной программы, которая состояла из 5-километровых пробежек 3 раза в неделю (К. Купер, 1970). Французские ученые при принудительной тренировке животных, (3 раза в неделю по 30 мин) через 10 недель обнаружили значительное увеличение плотности капиллярного русла миокарда и коронарного кровотока. Нагрузки, вдвое меньшие по объему (по 15 мин), подобных изменений в миокарде не вызывали.

Снижение основных факторов риска также наблюдается при объеме бега не менее 15км в неделю. Так, при выполнении стандартной тренировочной программы (бег 3 раза в неделю по 30 мин) отмечалось отчетливое понижение артериального давления до нормальных величин. Нормализация липидного обмена по всем показателям (холестерин, ЛИВ, ЛВП) отмечается при нагрузках свыше 2 ч в неделю. Сочетание таких тренировок с рациональным питанием позволяет успешно бороться с избыточной массой тела. Таким образом, минимальной нагрузкой для начинающих, необходимой для профилактики сердечно-сосудистых заболеваний и укрепления здоровья, следует считать 15 км бега в неделю, или 3 занятия по 30 мин.

Оптимальная нагрузка--это нагрузка такого объема и интенсивности, которая дает максимальный оздоровительный эффект для данного индивида. Зона оптимальных нагрузок ограничена снизу уровнем пороговых, а сверху максимальных нагрузок. На основании многолетних наблюдений автором было выявлено, что оптимальные нагрузки для подготовленных бегунов составляют 40 - 6О мин 3 - 4 раза в неделю (в среднем 30 - 40км в неделю). Дальнейшее увеличение количества пробегаемых километров нецелесообразно, поскольку не только не способствует дополнительному приросту функциональных возможностей организма (МНЮ, но и создает опасность травматизации опорно-двигательного аппарата, нарушения деятельности сердечно-сосудистой системы (пропорционально росту тренировочных нагрузок)). Так, Купер (1986) на основании данных Далласского центра аэробики отмечает рост травматизации опорно-двигательного аппарата при беге более 40 км в неделю. Наблюдалось улучшение психического состояния и настроения, а также снижение эмоциональной напряженности у женщин при недельном объеме бега до 40 км. Дальнейшее увеличение тренировочных нагрузок сопровождалось ухудшением психического состояния. При увеличении объема беговых нагрузок у молодых женщин до 50 - 60 км в неделю в ряде случаев отмечалось нарушение менструального цикла (в результате значительного снижения жирового компонента), что может стать причиной половой дисфункции. Некоторые авторы беговым "барьером" называют 90 км в неделю, превышение которого может привести к своеобразной "беговой наркомании" в результате чрезмерной гормональной стимуляции (выделение в кровь эндорфинов). Нельзя не учитывать также отрицательное влияние больших тренировочных нагрузок на иммунитет, обнаруженное многими учеными.

В связи с этим все, что выходит за рамки оптимальных тренировочных нагрузок, не является необходимым с точки зрения здоровья. Оптимальные нагрузки обеспечивают повышение аэробных возможностей, общей выносливости и работоспособности, т. е. уровня физического состояния и здоровья. Максимальная длина тренировочной дистанции в оздоровительном беге не должна превышать 20 км, поскольку с этого момента в результате истощения мышечного гликогена в энергообеспечение активно включаются жиры, что требует дополнительного расхода кислорода и приводит к накоплению в крови токсичных продуктов. Бег на 30--40 км требует повышения специальной марафонской выносливости, связанной с использованием свободных жирных кислот (СЖК), а не углеводов. Задача же оздоровительной физкультуры укрепление здоровья путем развития общей (а не специальной) выносливости и работоспособности.

Проблемы марафонского бега. Преодоление марафонской дистанции является примером сверх нагрузки, которая может привести к длительному снижению работоспособности и истощению резервных возможностей организма. В связи с этим марафонская тренировка не может быть рекомендована для занятий оздоровительной физкультурой (тем более что она не приводит к увеличению "количества" здоровья) и не может рассматриваться как логическое завершение оздоровительного бега и высшая ступень здоровья. Более того, избыточные тренировочные нагрузки, по мнению некоторых авторов, не только не препятствуют развитию возрастных склеротических изменений, но и способствуют их быстрому прогрессированию.

В связи с этим целесообразно хотя бы вкратце остановиться на физиологических особенностях марафонского бега.

В последние годы марафонская дистанция становится все более популярной, несмотря на трудности, связанные с ее преодолением и экстремальным воздействием на организм. Бегу на сверхдлинные дистанции присущ аэробный характер энергообеспечения, однако соотношение использования углеводов и жиров для окисления различно в зависимости от длины дистанции, что связано с запасами мышечного гликогена. В мышцах нижних конечностей у спортсменов высокого класса содержится 2 % гликогена, а у любителей оздоровительного бега--всего 1,46%. Запасы мышечного гликогена не превышают 300--400 г, что соответствует 1200 - 1600ккал (при окислении углеводов освобождается 4,1 ккал). Если учесть, что при аэробном беге расходуется 1 ккал/кг на 1 км пути, то спортсмену весом 60 кг этого количества энергии хватило бы на 20 - 25 км. Таким образом, при беге на дистанцию до 20 км запасы мышечного гликогена полностью обеспечивают мышечную деятельность, и никаких проблем возмещения энергетических ресурсов не возникает, причем на долю углеводов приходится около 80 % общих энергозатрат, а на долю жиров--только 20%. При беге на ЗО км и более запасов гликогена уже явно не хватает, и вклад жиров в энергообеспечение (за счет окисления СЖК) возрастает до 50 % и более. В крови накапливаются токсичные продукты обмена, отравляющие организм. При продолжительности бега 4 ч и более эти процессы достигают максимума и концентрация мочевины в крови (показатель интенсивности белкового обмена) достигает критических величин (Юммоль/л). Питание на дистанции не решает проблемы нехватки углеводов, так как по время бега процессы всасывания из желудка нарушены. У недостаточно подготовленных бегунов падение глюкозы в крови может достигать опасных величин -- 40-4 в квадрате мг вместо 100мг% (норма).

Дополнительные трудности возникают также вследствие потери жидкости с потом до 5 - 6 л, а в среднем – 3 - 4 % массы тела. Особенно опасен марафон при высокой температуре воздуха, что вызывает резкое повышение температуры тела. Испарение с поверхности тела 1 мл пота приводит к отдаче 0,5 ккал тепла. Потеря 3 л пота (средняя потеря во время марафонского забега) обеспечивает теплоотдачу около 1500ккал. Так, во время Бостонского марафона. У бегунов 40 - 50 лет наблюдалось повышение температуры тела (по данным телеметрической регистрации) до 39 - 41 градусов (Магов, 1977). В связи с этим возрастала опасность теплового удара, особенно при недостаточной подготовленности; описаны даже случаи смерти от теплового удара во время марафона.

Отрицательное влияние на организм может оказать и подготовка к марафону, требующая значительного увеличения тренировочных нагрузок. Американские авторы Браун и Грэхем (1989) отмечают, что для успешного преодоления марафона необходимо последние 12 недель перед стартом бегать ежедневно минимум по 12 км или по 80-100 км в неделю, что значительно больше бегового оптимума (уже не оздоровительная, а профессиональная тренировка). У людей старше 40 лет такая нагрузка нередко приводит к перенапряжению миокарда, двигательного аппарата или центральной нервной системы.

Вот почему, прежде чем приступить к марафонской тренировке, необходимо решить, какую цель вы преследуете, и трезво взвесить свои возможности - с учетом физиологического эффекта марафона. Тем же, кто достаточно подготовлен и во что бы то ни стало, решил подвергнуть себя этому нелегкому испытанию, необходимо пройти цикл специальной марафонской тренировки. Смысл ее состоит в том, чтобы безболезненно и как можно раньше "приучить" организм к использованию для энергообеспечения жиров (СЖК), сохраняя, таким образом, запасы гликогена в печени и мышцах и предотвращая резкое снижение глюкозы в крови (гипогликемию) и уровня работоспособности. Для этого необходимо постепенно увеличивать дистанцию воскресного бега до 30--38 км, не изменяя при этом объемы нагрузок в остальные дни. Это позволит избежать чрезмерного увеличения суммарного объема бега и перенапряжения опорно-двигательного аппарата.

Фундаментальные исследования показывают , что человек по мудрости природы наделен, кроме прочего, резервами. Под резервами следует понимать, прежде всего, особые формы метаболизма, глубинного обмена веществ, которые хранятся в генетической памяти организма и которые обладают способностью сохранять здоровье, а подчас и жизнь в неблагоприятных или экстремальных обстоятельствах. В самом общем виде - речь идет о повышении энергообеспечения организма за счет не востребованных до поры до времени, резервных биохимических реакций и соответствующих им структурных образований.

Не случайно, и последние годы мы являемся свидетелями повышения интереса к натуральным методам профилактики и лечения. К ним можно отнести фитотерапию, магнито-лазеротерапию, соляные пещеры, ряд других методов и подходов, включая гомеопатические. В этот круг естественно вписывается и Прерывистая нормобарическая гипокситерапия (ПНГ) как природный стимул неспецифической резистентности организма человека (метод "Горный воздух"). На практике это не что иное, как моделирование высокогорных условий по содержанию кислорода, но которым можно пользоваться в поликлинике, санатории, на предприятии и даже дома.

Общеизвестно, что горный климат чрезвычайно полезен для здоровья. Именно в горах люди живут дольше и меньше болеют. Однако, поднимаясь в горы, человек в той или иной степени может испытывать одышку, головокружение, общую слабость, сердцебиение, эйфорию. Этот симптокомплекс, известный как "горная болезнь", обусловлен пониженным атмосферным давлением и бесследно проходит при возвращении на равнину. Врачи всех времен, начиная с древних греков и йогов, знали о целебных свойствах горного климата. В литературе достаточно много сведений по лечению различных заболеваний в средне- и высокогорье.

При всем этом большом опыте пребывания и проживания человека в высокогорье заметным препятствием в утверждении метода ПНГ было широко распространенное суждение о том, что кислород всегда и только полезен, а недостаток его - вреден для здоровья. Тем больше потребовалось исследований на животных и клинических испытаний, чтобы доказать безвредность и высокою эффективность ПНГ.

Подтвердилось, что нормобарическая (при нормальном давлении) гипоксия переносится легче, чем гипобарическая (пониженное давление) в горах - отсутствует такой фактор, как пониженное атмосферное давление. Причем в полной мере сохраняется действие основного начала - гипоксии, одного из немногих, способного влиять на уровень энергообеспечения организма.

Жизнь человека непосредственно зависима от кислорода. Если без пиши можно жить месяц, без воды неделю, то без кислорода минуты. Запасов этого газа в организме нет. Как недостаток, так и избыток кислорода служат основой многообразных, патологических состояний. Когда мы говорим о целебном воздействии дозированной гипоксии, то следует подразумевать не лишение человека кислорода, а, напротив, совершенствование механизмов его захвата, транспорта и утилизации.

1. Большая энциклопедия Кирилла и Мефодия.

2. Коробков А.В., Головин В.А., Масляков В.А. Физическое воспитание. -М.: Высш. школа, 1983.

3. Коц Я.М., Спортивная физиология. -М.: Физкультура и спорт, 1986.

4. http://www.comail.ru

Оренбургский Государственный Университет

Факультет Информационных Технологий

Кафедра ИСТ

Тренировка и спорт в условиях гипоксии

Выполнил:

Загоруй А.С.

группа 02ИСТ

Оренбург, 2002

Воспитание физических качеств основывается на постоянном стремлении сделать сверх возможное для себя, удивить окружающих своими возможностями. Но для этого со времени рождения нужно постоянно и регулярно выполнять правила правильного физического воспитания. И этому постоянно мешает некоторым людям типический патологический процесс называемый:

Гипоксия (от гипо... и лат. oxygenium - кислород) (кислородное голодание), пониженное содержание кислорода в организме или отдельных органах и тканях. Возникает при недостатке кислорода во вдыхаемом воздухе или в крови (гипоксемия), при нарушении биохимических процессов тканевого дыхания и другого.

И она оказывает влияние на активность иммунной системы насыщенности тканей кислородом. Кислородное голодание (гипоксия) может вызываться: обездвиженностью, сердечно-сосудистыми заболеваниями. Недостаточность клеточного дыхания встречается у большинства городских жителей. Что бы этого ни происходило организация и руководство физическим воспитанием особенно в годы учебы, процесс обучения организуется в зависимости от состояния здоровья, уровня физического развития и подготовленности студентов, их спортивной квалификации, а также с учётом условий и характера труда их предстоящей профессиональной деятельности. Одной из главных задач высших учебных заведений является физическая подготовка студентов. Непосредственная ответственность за постановку и проведение учебно-воспитательного процесса по физическому воспитанию студентов в соответствии с учебным планом и государственной программы возложена на кафедру физического воспитания вуза. Массовая оздоровительная, физкультурная и спортивная работа проводится спортивным клубом совместно с кафедрой и общественными организациями.

Медицинское обследование и наблюдение за состоянием здоровья студентов в течение учебного года осуществляется поликлиникой или здравпунктом вуза и это, наверное, поможет предотвратить хотя бы один из видов гипоксии:

В основу классификации гипоксии, которая приводится ниже, положены причины и механизмы ее развития. Различают следующие виды гипоксии: гипоксическую, дыхательную, гемическую, циркуляторную тканевую и смешанную.
Гипоксическая, или экзогенная, гипоксия развивается при снижении парциального давления кислорода во вдыхаемом воздухе. Наиболее типичным примером гипоксической гипоксии может служить горная болезнь. Ее проявления находятся в зависимости от высоты подъема. В эксперименте гипоксическая гипоксия моделируется при помощи барокамеры, а также с использованием дыхательных смесей, бедных кислородом.

Это значит, что легкие неспособны накачивать воздух из-за отсутствия оного во внешней среде, блокирования верхних дыхательных путей или опадания самих легких. Таким образом, возможными причинами нарушения наружного дыхания могут быть:

o утопление, т.е. наполнение легких водой;

o отсутствие воздуха в акваланге;

o спазмы или засорение дыхательных путей водой, рвотой и посторонними частицами;

o спадание легких в результате пневмоторакса;

o повреждение альвеол при попадании в легкие воды.

Данный тип гипоксии нередко встречается на соревнованиях по подводной охоте и в других случаях, когда спортсмены и любители стараются нырнуть с задержкой дыхания поглубже и подольше. Гипервентиляция перед нырянием понижает уровень СО 2 в крови, тем самым подавляя рефлексы вдоха. При быстром подъеме объем легких расширяется, и содержание 0^ резко падает, что вызывает общую гипоксию и потерю сознания. За потерей сознания под водой неминуемо следует утопление.

Дыхательная, или респираторная, гипоксия возникает в результате нарушения внешнего дыхания, в частности нарушения легочной вентиляции, кровоснабжения легких или диффузии в них кислорода, при которых страдает оксигенация артериальной крови.

Кровяная, или гемическая, гипоксия возникает в связи с развитием нарушений в системе крови, в частности с уменьшением кислородной емкости ее. Гемическая гипоксия подразделяется на анемическую и гипоксию вследствие инактивации гемоглобина. В патологических условиях возможно образование таких соединений гемоглобина, которые не могут выполнять дыхательную функцию. Таким является карбоксигемоглобин ≈ соединение гемоглобина с окисью углерода. Сродство гемоглобина к окиси углерода в 300 раз выше, чем к кислороду, что обусловливает высокую ядовитость угарного газа: отравление наступает при ничтожных концентрациях окиси углерода в воздухе. При этом инактивируется не только гемоглобин, но и железосодержащие дыхательные ферменты. При отравлении нитритами, анилином образуется метгемоглобин, в котором трехвалентное железо не присоединяет кислород.

Гистотоксическая гипоксия: неспособность клеток воспринимать принесенный кровью кислород. Нарушение клеточного дыхания возможно в случае общего отравления организма - например, цианидами или ядом некоторых медуз.

Циркуляторная гипоксия развивается при местных и общих нарушениях кровообращения, причем в ней можно выделить ишемическую и застойную формы.
Если нарушения гемодинамики развиваются в сосудах большого круга кровообращения, насыщение крови кислородом в легких может быть нормальным, однако при этом может страдать доставка его тканям. При нарушениях гемодинамики в системе малого круга страдает оксигенация артериальной крови. Циркуляторная гипоксия может быть вызвана не только абсолютной, но и относительной недостаточностью кровообращения, когда потребность тканей в кислороде превышает его доставку. Такое состояние может возникнуть, например, в сердечной мышце при эмоциональных напряжениях, сопровождающихся выделением адреналина, действие которого хотя и вызывает расширение венечных артерий, но в то же время значительно повышает потребность миокарда в кислороде.

Часто встречаемая форма гипоксии - локальная. Замерзание конечностей при низкой температуре есть не что иное, как следствие замедления периферической циркуляции крови. Если оно продолжается, локальная гипоксия может вызвать необратимое омертвление клеток конечности - отмораживание. Гипоксическая кровь темного цвета, что, кстати, хороша видно при посинении пальцев, ушей и губ на морозе. Посинение языка означает наступление общей гипоксии.

Профилактика: Во избежание общей или локальной гипоксии следует придерживаться следующих правил поведения:

o Проверяйте свое снаряжение перед каждым погружением.

o Не погружайтесь в одиночку, а только в паре или группе.

o Постоянно контролируйте запас воздуха под водой.

o Не злоупотребляйте гипервентиляцией перед нырянием.

Гемическая гипоксия: неспособность крови транспортировать кислород при нормальной циркуляции в сосудах.

Такое случается при заболеваниях крови, влияющих на активность гемоглобина, а также после значительной потери крови при ранениях и повреждениях кровеносной системы.

Кислородное голодание тканей в результате нарушения микроциркуляции, которая, как известно, представляет собой капиллярный крово- и лимфоток, а также транспорт через капиллярную сеть и мембраны клеток.
Тканевая гипоксия ≈ это нарушения в системе утилизации кислорода. При этом виде гипоксии страдает биологическое окисление на фоне достаточного снабжения тканей кислородом. Причинами тканевой гипоксии являются снижение количества или активности дыхательных ферментов, разобщение окисления фосфорелирования.

Классическим примером тканевой гипоксии, при которой происходит инактивация дыхательных ферментов, в частности, цитохромоксидазы ≈ конечного фермента дыхательной цепи, является отравление цианидами, монойодацетатом. Алкоголь и некоторые наркотики (эфир, уретан) в больших дозах угнетают дегидрогеназы.
Снижение синтеза дыхательных ферментов, вызывающее тканевую гипоксию, наблюдается при авитаминозах. Особенно важен в этом отношении синтез рибофлавина и никотиновой кислоты, первый из которых является простетической группой флавиновых ферментов, а второй входит в состав кодегидрогеназ.

При разобщении окисления и фосфорилирования снижается эффективность биологического окисления, энергия рассеивается в виде свободного тепла, ресинтез макроэргических соединений снижается. Энергетическое голодание и метаболические сдвиги подобны тем, которые возникают при кислородном голодании.
В возникновении тканевой гипоксии может иметь значение активация перекисного свободнорадикального окисления, при котором органические вещества подвергаются неферментативному окислению молекулярным кислородом. Перекиси липидов вызывают дестабилизацию мембран, в частности, митохондрий и лизосом. Активация свободнорадикального окисления, а следовательно и тканевой гипоксии, наблюдается при дефиците его естественных ингибиторов (токоферолов, рутина, убихинона, глутатиона, серотонина, некоторых стероидных гормонов), при действии ионизирующего излучения, при повышении атмосферного давления.

Перечисленные выше отдельные виды кислородного голодания встречаются редко, чаще наблюдаются различные их комбинации. Например, хроническая гипоксия любого генеза обычно осложняется поражением дыхательных ферментов и присоединением кислородной недостаточности тканевого характера. Это дало основание выделить шестой вид гипоксии - смешанную гипоксию.
Выделяют еще гипоксию нагрузки, которая развивается на фоне достаточного или даже повышенного снабжения тканей кислородом. Однако повышенное функционирование органа и значительно возросшая потребность в кислороде могут привести к неадекватному кислородному снабжению и развитию метаболических нарушений, характерных для истинной кислородной недостаточности. Примером могут служить чрезмерные нагрузки в спорте, интенсивная мышечная работа.

Кислородное отравление: Жизнедеятельность человеческого организма и внутренние процессы, ее обуславливающие, тонко рассчитаны на потребление кислорода в определенном количестве. Избыток кислорода, равно как и его недостаток, вреден для организма. Превышение парциального давления О 2 величины в 1,8 атм. при длительной экспозиции делает газ токсичным для легких и головного мозга. Механизм токсичного воздействия 0 2 заключается в нарушении биохимического баланса тканевых клеток, в особенности, нервных клеток мозга.

Подавляющее большинство аквалангистов - любителей могут не опасаться кислородного отравления - превышение допустимого парциального давления при дыхании сжатым воздухом происходит на глубинах 130 - 140 м. Более реальна угроза для профессиональных подводников, использующих для дыхания регенерационное снаряжение или газовые смеси с повышенным содержанием О 2 - такие как нитрокс (О 2 ; в сочетании с азотом), гелиокс (О 2 /Не), тримикс (O 2 /N 2 /He) и другие.

Другой причиной кислородного отравления может стать дыхание чистым кислородом продолжительностью более 18-24 ч при оказании первой помощи и дыхание в неправильном режиме во время ре-компрессионного лечения в барокамере. Но это уж будет на совести лечащего врача.

К одной разновидности гипоксии относиться: Патогенез: Компенсаторные приспособления при гипоксии. При гипоксии различают компенсаторные приспособления в системах транспорта и утилизации кислорода. Кроме того, выделяют механизмы «борьбы за кислород» и приспособления к условиям пониженного тканевого дыхания.
Увеличение легочной вентиляции, как одна из компенсаторных реакций при гипоксии, происходит в результате рефлекторного возбуждения дыхательного центра импульсами с хеморецепторов сосудистого русла, главным образом синокаротидной и аортальной зон, которые обычно реагируют на изменение химического состава крови и в первую очередь на накопление углекислоты пионов водорода. При гипоксической гипоксии патогенез одышки несколько иной ≈ раздражение хеморецепторов происходит в ответ на снижение в крови парциального давления кислорода. Гипервентиляция является, несомненно, положительной реакцией организма на высоту, но имеет и отрицательные последствия, поскольку осложняется выведением углекислоты и снижением содержания ее в крови.

Таким образом, одышка в горах протекает на фоне не повышенного, а пониженного содержания СО; в крови ≈ гипокапнии. Понимание этого факта очень важно. Если принять во внимание влияние углекислоты на мозговое и коронарное кровообращение, регуляцию тонуса дыхательного и вазомоторного центров, поддержание кислотно-основного равновесия, диссоциацию оксигемоглобина, то становится ясным, какие важные показатели могут нарушаться при гипокапнии. Все это означает, что при рассмотрении патогенеза горной болезни гипокапнии следует придавать такое же значение, как и гипоксии.

При гипоксии также наблюдается мобилизация функции системы кровообращения, направленная на усиление доставки кислорода тканям (гиперфункция сердца, увеличение скорости кровотока, раскрытие нефункционирующих капиллярных сосудов). Не менее важной характеристикой кровообращения в условиях гипоксии является перераспределение крови в сторону преимущественного кровоснабжения жизненно важных органов и поддержание оптимального кровотока в легких, сердце, головном мозге за счет уменьшения кровоснабжения кожи, селезенки, мышц, кишок, которые в данных обстоятельствах играют роль депо крови. Перечисленные изменения кровообращения регулируются рефлекторными и гормональными механизмами. Кроме того, продукты нарушенного обмена (гистамин, адениновые нуклеотиды, молочная кислота), оказывая сосудорасширяющее действие, действуя на тонус сосудов также являются важными тканевыми факторами приспособительного перераспределения крови.
Повышение количества эритроцитов и гемоглобина увеличивает кислородную емкость крови. Выброс крови из депо может обеспечить экстренной, но непродолжительное приспособление к гипоксии. При более длительной гипоксии усиливается эритропоэз в костном мозге, о чем свидетельствует появление ретикулоцитов в крови, увеличение количества митозов в нормобластах и гиперплазия костного мозга.

Прежде существовало мнение, что гипоксия сама по себе стимулирует гемопоэ. В насюящее время считают, что гипоксия прямо или косвенно способствует разрушению гемоглобина и эритроцитов, а образующиеся при этом продумы распада играют роль факторов, стимулирующих синтез гемоглобина и образование эритроцитов. Это представление подкрепляется данными о том, что увеличению количества эритроцитов в крови предшествует его снижение, а также появление признаков их распада ≈ отложение железосодержащего пигмента в селезенке и повышенное выделение его с мочой. Теперь установлено, что в качестве стимуляторов эритропоэза при гипоксии выступают также эритропоэтины почек. Они стимулируют пролиферацию клеток эритробластнческого ряда костного мозга.

По некоторым данным, при гипоксии повышается способность молекулы гемоглобина присоединять кислород в легких и отдавать его тканям.
Механизмы адаптации к гипоксии. Описанные выше приспособительные изменения развиваются в наиболее реактивных системах организма, ответственных за транспорт кислорода и его распределение. Однако аварийная гиперфункция внешнего дыхания и кровообращенияния не может обеспечить стойкого и длительного приспособления к гипоксии, так как требует для своего осуществления повышенного, потребления кислорода, сопровождается повышением интенсивности функционирования структур и усилением распада белков. Аварийная гиперфункция требует со временем структурного и энергетического подкрепления, что обеспечивает не простое выживание, а возможность активной физической и умственной работы при длительной гипоксии.
В настоящее время к этому аспекту приковано наиболее пристальное внимание исследователей. Предметом изучения являются горные и ныряющие животные, коренные жители высокогорных районов, а также экспериментальные животные с компенсаторными приспособлениями к гипоксии, выработанными в течение нескольких поколений.

Установлено, что в системах, ответственных за транспорт кислорода развиваются явления гипертрофии и гиперплазии ≈ увеличивается масса дьгхательных мышц, легочных яльвеол, миокарда, нейронов дыхательного центра; усиливается кровоснабжение этих органов за счет увеличения количества функционирующих капиллярных сосудов и их гипертрофии (увеличения диаметра и длины). Это приводит к нормализации интенсивности функционирования структур. Гиперплазию костного мозга тоже можно рассматривать как пластическое обеспечение гиперфункции системы крови.

Получены данные о том, что при длительной акклиматизации к высотной гипоксии улучшаются условия диффузии кислорода из альвеолярного воздуха в кровь благодаря повышению проницаемости легочно-капиллярных мембран, увеличивается содержание миоглобина, который представляет собой не только дополнительную кислородную емкость, но и обладает ферментативной активностью в окислительных процессах.
Большой интерес представляют собой адаптационные изменения в системе утилизации кислорода. Здесь принципиально возможно следующее:

1) усиление способности тканевых ферментов утилизировать кислород, поддерживать достаточно высокий уровень окислительных процессов и осуществлять вопреки гипоксемии нормальный синтез АТФ;
2) более эффективное использование энергии окислительных процессов (в частности, в ткани головного мозга установлено повышение интенсивности окислительного фосфорнлирования за счет большего сопряжения этого процесса с окислением);
3) усиление процессов бескислородного освобождения энергии при помощи гликолиза (последний активизируется продуктами распада АТФ и ослаблением ингибирующего влияния АТФ на ключевые ферменты гликолиза).

На первом из этих положений следует остановиться более подробно. Существует предположение, что в процессе длительной адаптации к гипоксии происходят качественные изменения конечного фермента дыхательной цепи ≈ цитохромоксидазы, а возможно, и других дыхательных ферментов, в результате чего повышается их сродство к кислороду (3. И. Барбашова). Другой механизм адаптации к гипоксии заключается в увеличении количества дыхательных ферментов и мощности системы митохондрий путем увеличения количества митохондирий.
В объяснении патогенеза этих явлений предполагается следующая цепь, некоторые звенья которой установлены, а другие еще требуют дальнейшего изучения. Начальным звеном является торможение окисления и окислительного ресинтеза аденозинтрифосфорной кислоты при недостатке кислорода, в результате чего в клетке уменьшается количество макроэргов и соответственно увеличивается количество продуктов их распада. Масса митохондрий увеличивается, а это означает увеличение числа дыхательных цепей. Таким путем восстанавливается или увеличивается способность клетки вырабатывать энергию вопреки недостатку кислорода в притекающей крови.

Описанные процессы происходят главным образом в органах с наиболее интенсивной адаптационной гиперфункцией при гипоксии, т.е. ответственных за транспорт кислорода (легкие, сердце, дыхательные мышцы, эритробластический росток костного мозга), а также наиболее страдающих от недостатка кислорода (кора большого мозга, нейроны дыхательного центра). В этих же органах увеличивается синтез структурных белков, приводящий к явлениям гиперплазии и гипертрофии. Таким образом длительная гиперфункция систем транспорта и утилизации кислорода получает при гипоксии пластическое и энергетическое обеспечение (Ф. 3. Меерсон). Эта фундаментальная перемена на клеточном уровне меняет характер адаптационного процесса при гипоксии. Расточительная гиперфункция внешнего дыхания, сердца и кроветворения становится излишней. Развивается устойчивая и экономная адаптация.

Повышению устойчивости тканей к гипоксии способствует активизация гипоталамо-гипофизарной системы и коры надпочечных желез. Гликокортикоиды активизируют некоторые ферменты дыхательной цепи, стабилизируют мембраны лизосом.
При разных видах гипоксии соотношение между описанными реакциями может быть различным. Так, например, при дыхательной и циркуляторной гипоксии ограничены возможности приспособления в системе внешнего дыхания и кровообращения. При тканевой гипоксии не эффективны приспособительные явления в системе транспорта кислорода.

Патологические нарушения при гипоксии. Нарушения, характерные для гипоксии, развиваются при недостаточности или истощении приспособительных механизмов. Однако следует иметь в виду, что гипоксия, как и любой другой патологический процесс, представляет собой тесное переплетение явлений собственно патологических и защитно-приспособительных, и если последние не перекрывают повреждений, вызванных гипоксией, развивается кислородная недостаточность.
Окислительно-восстановительные процессы, как известно, являются механизмом получения энергии, необходимой для всех процессов жизнедеятельности. Сохранение этой энергии происходит в фосфорных соединениях, содержащих макроэргическне связи. Биохимические исследования при гипоксии выявили уменьшение содержания этих соединений в тканях. Таким образом, недостаток кислорода приводит к энергетическому голоданию тканей, что лежит в основе всех нарушений при гипоксии.

При недостатке кислорода происходит нарушение обмена веществ и накопление продуктов неполного окисления, многие из которых являются токсическими. В печени и мышцах, например, уменьшается количество гликогена, а образующаяся глюкоза не окисляется до конца. Молочная кислота, которая при этом накапливается, может изменять кислотно-основное равновесие в сторону ацидоза. Обмен жиров также происходит с накоплением промежуточных продуктов ≈ ацетона, ацетоуксусной и гидроксимасляной кислот. Накапливаются промежуточные продукты белкового обмена.

Увеличивается содержание аммиака, снижается содержание глутамина, нарушается обмен фосфопротеидов и фосфолипидов, устанавливается отрицательный азотистый баланс. Изменения электролитного обмена заключаются в нарушении активного транспорта ионов через биологические мембраны, снижении количества внутриклеточного калия. Нарушается синтез нервных медиаторов.
Чувствительность различных органов и тканей к недостатку кислорода неодинакова и находится в зависимости от следующих факторов:

1) интенсивности обмена веществ, т. е. потребности ткани в кислороде;
2) мощности ее гдиколитической системы, т. е. способности вырабатывать энергию без участия кислорода;
3) запасов энергии в виде макроэргических соединений;
4) потенциальной возможности генетического, аппарата обеспечивать пластическое закрепление гиперфункции.

Co всех этих точек зрения в самых неблагоприятных условиях находится нервная система, и это объясняет, почему пеовыми признаками кислородного голодания являются нарушения нервной деятельности. Еще до появления грозных симптомов кислородного голодания возникает эйфория. Это состояние характеризуется эмоциональным и двигательным возбуждением, ощущением самодовольства и собственной силы, а иногда, наоборот, потерей интереса к окружающему, неадекватностью поведения. Причина этих явлений лежит в нарушении процессов внутреннего торможения. Будучи филогенетически более молодым процессом, внутреннее торможение обнаруживает и наибольшую ранимость при кислородной недостаточности.
При длительной гипоксии наблюдаются более тяжелые обменные и функциональные нарушения и центральной нервной системе. Развивается торможение, нарушается рефлекторная деятельность, расстраивается регуляция дыхания и кровообращения. Потеря сознания и судороги являются грозными симптомами тяжелого течения кислородного голодания.
Нарушения в других органах и системах при гипоксии находятся в тесной зависимости от нарушения регуляторной деятельности центральной нервной системы, энергетического голодания и накопления токсических продуктов обмена веществ.

По чувствительности к кислородному голоданию второе место после нервной системы занимает сердечная мышца. Проводящая система сердца более устойчива, чем сократительные элементы. Нарушения возбудимости, проводимости и сократимости миокарда клинически проявляются тахикардией и аритмией. Недостаточность сердца, а также снижение тонуса сосудов в результате нарушения деятельности вазомоторного центра приводят кгипотензиии общему нарушению кровообращения. Последнее обстоятельство сильно осложняет течение патологического процесса, какой бы ни была первоначальная причина гипоксии.
Нарушение внешнего дыхания заключается в нарушении легочной вентиляции. Изменение ритма дыхания часто приобретает характер периодического дыхания Чейна ≈ Стокса. Особое значение имеет развитие застойных явлений в легких. При этом альвеолярно-капиллярная мембрана утолщается, в ней развивается фиброзная ткань, ухудшается диффузия кислорода из альвеолярного воздуха в кровь.
В пищеварительной системе наблюдается угнетение моторики, снижение секреции пищеварительных соков желудка, кишок и поджелудочной железы.
Первоначальная полиурия сменяется нарушением фильтрационной способности почек.
В тяжелых случаях гипоксии снижается температура тела, что объясняется понижением обмена веществ и нарушением терморегуляции. В коре надпочечных желез первоначальные признаки активации сменяются истощением.

Более глубокий анализ описанных выше изменений при гипоксии приводит к заключению о том, что одни и те же явления, будучи с одной стороны патологическими, с другой ≈ могут быть оценены как приспособительные. Так, нервная система, обладая высокой чувствительностью к кислородному голоданию, имеет эффективное защитное приспособление в виде охранительного торможения, а это, являясь следствием гипоксии, в свою очередь снижает чувствительность нервной системы к дальнейшему развитию кислородного голодания. Снижение температуры тела и обмена веществ может быть оценено подобным же образом.

Повреждение и защита при гипоксии тесно переплетены, но именно повреждение становится начальным звеном компенсаторного приспособления. Так, снижение рО2 в крови вызывает раздражение хеморецепторов и мобилизацию внешнего дыхания и кровообращения. Именно гипоксическое повреждение клетки, дефицит АТФ являются начальным звеном в событиях, которые в итоге приводят к активации биогенеза митохондрий и других структур клетки и развитию устойчивой адаптации к гипоксии.

Переносимость гипоксии зависит от многих причин, в том числе от возраста. Высокую устойчивость новорожденных животных к кислородному голоданию можно продемонстрировать следующим опытом. Если взрослую крысу и новорожденного крысенка одновременно подвергнуть в барокамере действию разреженного воздуха, первой погибнет взрослая крыса, в то время как крысенок еще долго остается живым. Это объясняется тем, что автоматическая деятельность дыхательного центра новорожденного при гипоксии может поддерживаться более старой и примитивной формой обмена ≈ анаэробным расщеплением углеводов. Установлено также, что новорожденный обладает некоторым запасом фетального гемоглобина, который способен выполнять дыхательную функцию при пониженном парциальном давлении кислорода в крови. Однако решающее значение в высокой устойчивости новорожденного к кислородному голоданию имеет менее высокий уровень развития центральной нервной системы. То же можно сказать и о животных, находящихся на ранних ступенях эволюционного развития. Таким образом, в процессе эволюционного и онтогенетического развития наблюдается повышение чувствительности к недостатку кислорода и одновременно развитие более сложных приспособительных реакций.

При некоторых состояниях, характеризующихся глубоким торможением центральной нервной системы и снижением обмена веществ (сон, наркоз, гипотермия, зимняя спячка), понижена чувствительность организма к недостатку кислорода.
Переносимость гипоксии можно повысить искусственно. Первый способ заключается в снижении реактивности организма и его потребности в кислороде (наркоз, гипотермия), второй ≈ в тренировке, укреплении и более полном развитии приспособительных реакций в условиях барокамеры или высокогорья. Заслуга разработки метода ступенчатой акклиматизации к высокогорному климату принадлежит Н. Н. Сиротинину.

Тренировка к гипоксии повышает устойчивость организма не только к данному воздействию, но и ко многим другим неблагоприятным факторам, в частности, к физической нагрузке, изменению температуры внешней среды, к инфекции, отравлениям, воздействию ускорения, ионизирующего излучения. Иными словами, тренировка к гипоксии повышает общую неспецифическую резистентность организма.
Терапия гипоксии должна включать комплекс мероприятий, зависящих от вида, стадии и степени гипоксии, а также от особенностей ответной реакции организма на гипоксию. На первом месте стоит ликвидация основной причины, вызвавшей кислородное голодание. В тех случаях когда в организме не нарушена утилизация кислорода тканями, решающим фактором является введение кислорода. При ряде заболеваний применяют кислород под повышенным давлением (гипербарическая оксигенация). Это создает запасы кислорода, физически растворенного в крови и тканях. Данный способ применим при отравлении угарным газом и барбитуратами, при врожденных пороках сердца, а также во время операций на сухом сердце, т. е. в условиях временной остановки кровообращения и дыхания.

При умеренной гипоксии может иметь значение стимуляция нервной системы с целью усиления защитных реакций со стороны дыхательной системы и системы кровообращения. Патогенетически оправдано применение гормонов коры надпочечных желез и гипофиза, повышающих общую резистентность организма. Большое значение имеют мероприятия, направленные на коррекцию патологических нарушений при гипоксии, на обезвреживание токсических продуктов анаэробного обмена.
Проводится большая работа по изысканию специфических противогипоксических препаратов, корригирующих нарушения на тканевом и клеточном уровнях. Разрабатываются искусственные переносчики электронов в цепи дыхательных ферментов (препараты, подобные цитохрому С, гидрохинону). Синтезируются средства, способные ингибировать свободнорадикальное окисление, а также повышающие степень сопряжения окисления и фосфорилирования. Проводятся испытания фосфорилированных углеводов, которые создают возможность анаэробного образования АТФ. Целесообразно введение веществ, усиливающих гликолиз и снижающих потребность организма в кислороде. Перспективно также изыскание химических веществ, выступающих в роли индукторов генетического аппарата, ответственного за формирование структурной основы долговременной адаптации к гипоксии.

Чтобы этого не происходило надо проводить физиологические основы оздоровительной тренировки:

Система физических упражнений, направленных на повышение функционального состояния до необходимого уровня (100% ДМПК и выше), называется оздоровительной, или физической, тренировкой (за рубежом - кондиционная тренировка). Первоочередной задачей оздоровительной тренировки является повышение уровня физического состояния до безопасных величин, гарантирующих стабильное здоровье. Важнейшей целью тренировки для людей среднего и пожилого возраста является профилактика сердечно-сосудистых заболеваний, являющихся основной причиной нетрудоспособности и смертности в современном обществе. Кроме того, необходимо учитывать возрастные физиологические изменения в организме в процессе инволюции. Все это обусловливает специфику занятий оздоровительной физической культурой и требует соответствующего подбора тренировочных нагрузок, методов и средств тренировки.

В оздоровительной тренировке (так же, как и в спортивной) различают следующие основные компоненты нагрузки, определяющие ее эффективность: тип нагрузки, величину нагрузки, продолжительность (объем) и интенсивность, периодичность занятий (количество раз в неделю), продолжительность интервалов отдыха между занятиями. И также определять тип нагрузки:

Характер воздействия физической тренировки на организм зависит, прежде всего, от вида упражнений, структуры двигательного акта. В оздоровительной тренировке различают три основных типа упражнений, обладающих различной избирательной направленностью:


Но и некоторые медицинские показатели, откуда становится очевидным, что превосходство экспериментальной группы не является случайным. Следовательно, условия среднегорья положительно влияют на общее физическое состояние спортсменов. Глава 3. Экспериментальное исследование физической подготовки лыжников-гонщиков, использующих в качестве подготовки среднегорье ФИО Лыжероллеры 5 км (исходные) ...

Пользователь не испытывает каких-либо затруденний в реализации любой из предлагаемых программ ИГТ. Заключение. ИГТ - новый метод гипоксической подготовки, широко используемый в клинической и спортивной медицине в качестве безмедикаментозного средства терапии и профилактики заболеваний, укрепления здоровья и повышения физической работоспособности. Практические приложения ИГТ становятся возможными...

Связь различными (в час-тности афферентными и эфферентными) нейронами. Благодаря многочисленным разветвлениям аксона, промежуточные нейроны могут одновременно возбуж-дать большое число других нейронов. 77. Физиология спорта. Соврем. сос-тояние, перспективы развития. Общие проблемы и задачи. Понятие о физи-ологич. резервах, классификация. Возможности управления и развития. Спорт. физиология...

на ту или иную функцию, полезны ли эти занятия для здоровья человека, способствуют ли они расширению и укреплению его функциональных возможностей. И в наши дни многие из выполняемых изысканий в области биологии спорта все еще пытаются утвердить тезис о безусловной полезности занятий спортом. В то же время неуклонно растет число ученых-биологов, которые уже сполна удовлетворили свой интерес в...

© 2020 estry.ru
Портал о беременности